题目背景
小明正在玩一个“翻硬币”的游戏。
题目描述
桌上放着排成一排的若干硬币。我们用 *
表示正面,用 o
表示反面(是小写字母,不是零),比如可能情形是 **oo***oooo
,如果同时翻转左边的两个硬币,则变为 oooo***oooo
。现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
输入格式
两行等长字符串,分别表示初始状态和要达到的目标状态,每行长度小于 1000。
数据保证一定存在至少一种方案可以从初始状态和要达到的目标状态。
输出格式
一个整数,表示最小操作步数。
输入输出样例
输入 #1复制
********** o****o****
输出 #1复制
5
输入 #2复制
*o**o***o*** *o***o**o***
输出 #2复制
1
说明/提示
source:蓝桥杯 2013 省 B 组 H 题
方法一:
看到这句话:每次只能同时翻转相邻的两个硬币。表示我们的每次操作会反转两个硬币,这里我模拟了人们日常中反转硬币的思维和利用计算机顺序检索的思维(讲的比较抽象,代码能理解就行)想到可以按一个顺序(我就从左向右了),比较字符串s1和s2的局部是否相等,不相等的话我们反转过来,并且让下一个硬币也反转,遍历整个字符串一遍即可得出答案。为什么可以用这种方法?因为题目保证了一定存在至少一种方案可以从初始状态和要达到的目标状态。也就是一定有解的情况。
#include <bits/stdc++.h>
using namespace std;
string s1,s2;
int main()
{
cin >> s1 >> s2;
int len = s1.size();
int cnt = 0;
for (int i = 0; i < len; i++)
{
if (s1[i] != s2[i]) {
s1[i] = s2[i]; //变成想要的状态
//不是最后一位
if (i != len - 1) s1[i+1] = (s1[i+1] == '*'?'o':'*'); //让下一位反转
cnt++;
}
}
cout << cnt << endl;
return 0;
}
方法二:
由于一定有解,且每次操作都是反转两个相邻的硬币,所以两个字符串中硬币不相同的个数一定是偶数个。那么按照前面的思想,从不相同的硬币开始反转,反转到下一个不相同的硬币,这一段路程中,那些中间硬币实际被反转了两遍(也就相当于没有反转),那我们可以省略模拟这部分过程,直接找到这两个不相同硬币之间反转了多少遍。如何找出这份关系,我列了个表:
可以看到,在这两个硬币之间反转了多少遍其实就是它们的下标之差,那么可以写出如下代码
#include <bits/stdc++.h>
using namespace std;
string s1,s2;
int main()
{
cin >> s1 >> s2;
int len = s1.size();
int cnt = 0;
//定义一个指针p,指向两个不同位置中靠前的一个
int p = -1; //p不能从0开始,0下标是存在数的,但它不一定是一个不同的硬币
for (int i = 0; i < len; i++)
{
if (s1[i] != s2[i]) {
if (p == -1) p = i; //遇到两个不同硬币的前一个,先指向这个位置保留下来
else {
cnt += i - p; //不是-1那就是遇到了两个硬币中的后一个
p = -1; //加完后让p回到不指向的状态
}
}
}
cout << cnt << endl;
return 0;
}