AD9528学习笔记

本文介绍了ADI的AD9528时钟芯片,其由2阶段PLL组成,支持SYSREF信号生成和多设备同步。芯片提供14路输出,包括高频率和低频率选项,可通过PLL1、PLL2或内部SYSREF发生器配置。文章详细描述了PLL结构、VCXO支持和输出配置方法,以及裸机驱动程序链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

AD9528是ADI的一款时钟芯片,由2-stage PLL组成,并且集成JESD204B/JESD204C SYSREF信号发生器,SYSREF发生器输出单次、N次或连续信号,并与PLL1和PLL2输出同步,从而可以实现多器件之间的同步。
AD9528总共有14路输出,6路输出(Output 0 - Output 3,Output 12, Output 13)最高可达1.25 GHz, 其余8路输出最高可达1 GHz。每一路输出均可配置为从PLL1,PLL2或内部SYSREF发生器输出。每一路都包含一个带数字相位粗调功能的分频器,以及一个模拟精调相位延迟模块,可以灵活分配14路输出为 device clock/ SYSREF信号的组合。
Functional Block Diagram:

PLL1

PLL1 Block Diagram

PLL1 支持外部压控晶体振荡器(VCXO),外部REFA和REFB参考时钟。VCXO和参考时钟支持LVDS和COMS两种可选的输入电平。两路参考时钟输入和VCXO输入路径上分别有数字时钟分频器(RAR_ARARBR_BRBN1N1N1) 。
参考输入的选择可以通过寄存器0x0108进行控制:

REFA和REFB参考时钟输入的选择支持引脚控制和软件控制两种模式,通过寄存器0x010A进行控制:

PLL2

PLL2 Block Diagram

输入的reference来自VCXO,内部有一个内置的VCO(压控振荡器),输出频率范围为:3.45GHz - 4.025 GHz。

Clock Distribution

14路输出可以选择配置为PLL1 output, PLL2 output或者SYSREF。

Clock Distribution Control regster地址从0x0300到0x0329,以Output 0为例子,0x0300寄存器比特[7:5]来配置输出信号的来源:

结语

最后附上AD9528裸机驱动程序地址:https://github.com/analogdevicesinc/no-OS/tree/master/drivers/frequency/ad9528

### 回答1: GMM-EM算法的伪代码:// 迭代k次 for (k=0; k<K; k++) { // E步骤 // 计算每个样本属于每个模型的概率 for (i=0; i<N; i++) { for (j=0; j<M; j++) { p[i][j] = pi[j]*Gaussian(x[i],mu[j],sigma[j]); } } // 计算每个样本属于每个模型的期望值 for (i=0; i<N; i++) { for (j=0; j<M; j++) { q[i][j] = p[i][j]/sigma[j]; } } // M步骤 // 更新模型参数 for (j=0; j<M; j++) { pi[j] = pi[j] + q[i][j]; mu[j] = mu[j] + q[i][j]*x[i]; sigma[j] = sigma[j] + q[i][j]*(x[i] - mu[j])*(x[i] - mu[j]); } } ### 回答2: GMM-EM(高斯混合模型期望最大化)算法是一种用于估计高斯混合模型参数的迭代优化算法。下面是GMM-EM算法的伪代码: 输入:观测数据X,高斯分量个数K 输出:高斯混合模型的参数 1. 初始化高斯混合模型参数: - 初始化每个高斯分量的均值向量mu_k,协方差矩阵sigma_k和混合系数pi_k - 使用随机值或者其他预设的初始值进行初始化 2. 迭代优化: - 重复以下步骤,直到收敛: 1. Expectation 步骤: - 计算每个样本属于每个高斯分量的后验概率gamma(z_{nk}),即样本x_n由高斯分量k生成的概率 - 使用当前的参数值计算gamma(z_{nk}),即根据当前参数估计后验概率 2. Maximization 步骤: - 更新均值向量mu_k: - 对于每个高斯分量k,计算新的均值mu_k: - mu_k = (sum_n(gamma(z_{nk})*x_n)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和 - 更新协方差矩阵sigma_k: - 对于每个高斯分量k,计算新的协方差矩阵sigma_k: - sigma_k = (sum_n(gamma(z_{nk})*(x_n - mu_k)*(x_n - mu_k).T)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和,.T表示矩阵的转置操作 - 更新混合系数pi_k: - 对于每个高斯分量k,计算新的混合系数pi_k: - pi_k = sum_n(gamma(z_{nk})) / N 其中,sum_n表示对所有样本求和,N为样本总数 3. 返回最终的高斯混合模型参数 GMM-EM算法通过交替进行Expectation步骤和Maximization步骤,迭代地优化高斯混合模型的参数,直到收敛到最优参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李71~李先森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值