在2024年红杉资本人工智能峰会上,著名的人工智能专家吴恩达发表了一场备受关注的演讲,深入探讨了智能代理(agent)的四大范式。这四大范式代表了当前AI技术在不同应用领域中的核心方法和实践,分别是反思(Reflection)、工具使用(Tool Use)、规划(Planning)和多代理协作(Multi-Agent)。
1、反思模式(Reflection)
反思模式通过让AI对自己的输出进行反思和改进,从而实现质量提升。这一过程类似于人类写作过程中的自我审查和修改。具体流程包括生成初始输出、自我评估以及优化迭代三个步骤。在自我评估阶段,AI会检查输出内容的准确性、完整性和逻辑性,并识别潜在问题和改进空间。然后基于发现的问题进行修改,可能需要多轮改进才能达到质量要求。
组件构成
- 输入提示(Prompt) :这是提供给模型的初始输入,作为文本生成过程的起点。就好比给一个作家一个主题,让他围绕这个主题开始创作。
- 生成(Generate):AI 模型根据输入的提示来创建一个回应的过程。就像作家根据给定的主题开始构思并写出一段文字一样,模型会依据提示产生相应的文本内容。
- 输出文本(Output Text) :模型生成的回应就是输出文本。这就好比作家写完初稿后呈现出来的文章内容,是模型基于提示所创造出的结果。
- 反思(Reflect):在这个步骤中,会对生成的输出进行分析、审查或者修改,以实现质量上的改进。就好像作家在完成初稿后,自己再仔细阅读,看看哪里写得不好、有没有错误、是否可以表达得更清晰等,从而对文章进行优化。
- 反思后的文本(Reflected Text) :经过反思阶段对初始生成内容进行调整、修改后得到的文本。就像作家修改后的文章版本,比初稿在质量上有了提升,更接近最终想要呈现的效果。
- 迭代(Iterate) :整个过程会重复进行,以反思后的文本为基础,再次生成新的输出,进一步完善结果。这就好比作家在修改完初稿后,又继续对文章进行打磨,不断优化,直到达到满意的质量标准。
2、工具使用模式(Tool Use)
工具使用模式使AI能够调用外部工具和API,极大地扩展了其能力范围。主要工具类型包括信息获取工具(如网络搜索、Wikipedia查询等)、代码相关工具(如Python解释器、代码执行环境等)以及数据处理工具(如数据分析函数、格式转换工具等)。应用方式通常涉及AI通过特定格式请求调用工具,系统执行相应功能后返回结果供AI继续处理。
核心思想:任务的模块化
- 系统架构:该模式摒弃了依赖单一、庞大的AI模型来处理所有任务的传统方式,而是将用户的需求(用户提示)分解成多个子任务,并将这些子任务分配给不同的专门工具(文中以工具A、工具B、工具C为例)。这种模块化的架构使得整个系统变得更加高效和可扩展。
工具的专业化 :
- 工具A:例如,可以是一个事实核查工具,它能够查询数据库或互联网以验证信息的真实性。
- 工具B:可能是一个数学求解器或者代码执行环境,用于处理各种计算任务或者运行模拟实验。
- 工具C:可能是另一个专门的工具,比如用于语言翻译或者图像识别等。
信息查询能力:图中的每个工具都被设计为能够根据需要查询信息源(如数据库、网络API等),这进一步体现了模块化架构的特点,即不同的子代理或者专门的组件负责处理不同的任务。
顺序处理:模型很可能会依次通过这些工具运行查询操作,也就是说多个用户提示可以逐一被处理,每个工具独立地查询其各自的数据源。这种顺序处理的方式能够带来快速、响应迅速的结果,尤其是当与在特定领域表现出色的工具相结合时,效果更为显著。
3、规划模式(Planning)
规划模式允许AI将复杂任务分解为多个步骤,并制定执行计划。首先是对任务进行分析,理解目标需求并识别关键步骤及依赖关系;其次是设计执行路径,选择合适的工具并安排执行顺序;最后是监控执行情况,处理异常情况并根据需要优化执行计划。这种模式适合于复杂多步骤的任务,并且需要具备容错和调整机制。
规划模式的主要组成部分
- 规划(Planning):在初始阶段,人工智能代理解释提示并设计一个总体计划。该计划概述了人工智能打算如何解决这一问题,包括高级目标和战略。
- 生成任务(Generate Task):AI系统根据计划生成必须执行的特定任务。每个任务代表了总体目标中较小的、可管理的部分,允许AI以集中的步骤工作。
- 单任务代理(Single Task Agent):单任务代理负责完成前一步中生成的每个任务。该代理使用预定义的方法执行每个任务,如ReAct(Reason Act)或ReWOo(Reasoning WithOut Observation)。一旦任务完成,代理将返回一个任务结果,该结果将被发送回规划循环。
- 重新计划(Replan):“重新计划”阶段评估“任务结果”,以确定是否需要进行任何调整。如果任务执行不能完全满足期望的结果,系统将重新规划并可能修改任务或策略。这种反馈循环允许AI系统反复学习和改进其方法,使其更能适应不断变化的需求或意想不到的结果。
- 迭代(Iterate):模式的这一部分是连接“生成任务”和“重新计划”的循环。它表明了这个过程的迭代性质,在这个过程中,人工智能系统不断地重新评估和调整它的方法,直到达到令人满意的结果。
4、多智能体协作模式(Multi-Agent)
多智能体协作模式涉及到多个AI Agent共同工作,各司其职,互相配合完成任务。角色分工可以包括生成者负责创造内容、评审者负责质量控制、优化者负责改进完善、协调者负责任务管理等。互动机制则涵盖了信息共享、观点讨论、结果整合等多个方面,旨在提升问题解决的质量,增强处理复杂任务的能力,并实现多角度思考。
可以根据不同的任务定义不同的智能体角色,通过不同智能体的相互协作,共同完成一项复杂的任务。
- 代理1:软件工程师——专注于与软件开发相关的技术问题解决,提供编码解决方案,或建议基于软件的策略。
- 代理2:项目经理——负责项目管理方面的工作,协调各代理人之间的协作,并确保整个流程与项目总体目标一致。
- 代理3:内容开发者——生成内容、撰写草稿,或协助开发项目所需的各种文档和创意材料。
- 代理4:市场研究分析师——收集数据,进行市场趋势分析,并提供有助于其他代理人制定策略的见解。
5、小结
这四种AI Agent设计模式不仅各自具有独特的优势,而且它们之间也存在互补性,可以根据实际应用场景的需求灵活组合使用。例如,在一个复杂的项目中,可以先采用规划模式来拆解任务,再利用工具使用模式来执行具体的操作,同时结合反思模式来确保输出的质量,最后通过多智能体协作模式来提升整体效率和效果。随着技术的发展,这些模式的应用将会更加广泛,推动AI领域的进一步创新和发展。
6、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。