机器学习基石 7.3 Physical Intuition of VC Dimension

本文探讨了在机器学习中自由度的概念,包括感知器的维度、假设的自由度、二元分类的有效自由度,以及VC维数与参数数量之间的关系。通过具体例子说明了在特定条件下,VC维数如何等同于自由参数的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Degrees of Freedom

d + 1 d+1 d+1实际上是perceptron的维度。 w \mathbf{w} w代表了hypothesis的自由度。
hypothesis的大小 M = ∣ H ∣ M=|\mathcal{H}| M=H模拟了自由度。
d V C = d + 1 d_{VC}=d+1 dVC=d+1代表了有效的二元分类的自由度。

这里写图片描述

这里写图片描述

Two Old Friends

这里写图片描述

从上面这两个例子可以看出 d V C d_{VC} dVC大概等于自由的参数的个数,但不总是对的。

这里写图片描述

M M M and d V C d_{VC} dVC

这里写图片描述

Fun Time

w 0 = 0 w_0=0 w0=0的情况下, d V C = d d_{VC}=d dVC=d
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值