YOLOv8魔改升级!BiFPN双向特征金字塔融合实现多尺度检测性能飙升(附3种配置方案)

1. 概述与背景

1.1 技术背景

在目标检测领域,小目标检测一直是一个具有挑战性的问题。传统的特征金字塔网络(FPN)虽然在多尺度特征融合方面取得了成功,但在处理不同层级特征之间的语义差距时仍存在局限性。

1.2 AFPN简介

AFPN(Asymptotic Feature Pyramid Network,渐近特征金字塔网络)是一种新型的特征融合网络,支持非相邻层级之间的直接交互。AFPN通过融合两个相邻的低层特征开始,然后渐近地将高层特征融合到融合过程中。这种渐近融合策略有效减小了不同层次特征之间的语义差距,提升了特征融合效果。

1.3 改进目标

本文将展示如何将AFPN集成到YOLOv8中,以提升模型在小目标检测任务中的性能表现。通过替换原有的检测头,实现更高效的多尺度特征融合。

相关论文: https://arxiv.org/pdf/2306.15988.pdf


2. 实现步骤详解

2.1 Step 1: 创建AFPN核心模块

首先在YOLOv8项目目录中找到 ultralytics/nn/modules/</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导ai君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值