文章目录
1. 概述与背景
1.1 技术背景
在目标检测领域,小目标检测一直是一个具有挑战性的问题。传统的特征金字塔网络(FPN)虽然在多尺度特征融合方面取得了成功,但在处理不同层级特征之间的语义差距时仍存在局限性。
1.2 AFPN简介
AFPN(Asymptotic Feature Pyramid Network,渐近特征金字塔网络)是一种新型的特征融合网络,支持非相邻层级之间的直接交互。AFPN通过融合两个相邻的低层特征开始,然后渐近地将高层特征融合到融合过程中。这种渐近融合策略有效减小了不同层次特征之间的语义差距,提升了特征融合效果。
1.3 改进目标
本文将展示如何将AFPN集成到YOLOv8中,以提升模型在小目标检测任务中的性能表现。通过替换原有的检测头,实现更高效的多尺度特征融合。
相关论文: https://arxiv.org/pdf/2306.15988.pdf
2. 实现步骤详解
2.1 Step 1: 创建AFPN核心模块
首先在YOLOv8项目目录中找到 ultralytics/nn/modules/</