文章目录

亲爱的AI探索者们,在计算机视觉的浩瀚星空中,目标检测技术无疑是最亮眼的一颗星。它赋予机器“看懂”世界的能力,从自动驾驶到智能安防,无处不在。YOLO系列模型,凭借其卓越的实时性和精度,一直稳坐目标检测领域的“SOTA”宝座。然而,随着应用场景的日益复杂,如何更有效地融合来自不同深度、不同尺度的特征,一直是研究者们孜孜不倦探索的难题。
传统的特征融合方法,如简单的加和(summation)或串联(concatenation),虽然直观高效,却往往忽略了不同特征图之间内在的语义和尺度不一致性。浅层特征富含空间细节,但语义信息贫乏;深层特征语义丰富,但空间分辨率低。简单粗暴的融合,很可能导致“水土不服”,甚至相互干扰,尤其是在处理小目标或复杂背景时,这些问题会变得尤为突出。
正是在这样的背景下,iAFF(Iterative Attention Feature Fusion)模块应运而生。它不是简单地堆叠特征,而是引入了精妙的注意力机制,让模型能够“智能”地判断哪些特征更重要,如何更好地将它们融为一体。iAFF的独特之处在于其多尺度通道注意力和迭代应用的思想,它就像一位经验丰富的“融合大师”,能够反复斟酌,精益求精,确保特征融合达到最优效果。即使是在模型层数或参数总量相对较少的情况下,iAFF也能像魔法一样,显著提升模