文章目录

前言
通过前四篇实战教程,相信大家已掌握YOLOv5的基础操作。本篇作为系列终章,将结合火焰检测实战项目,从环境配置到模型部署全流程拆解,补充关键细节与工程化技巧。通过本文,您将学会:
-
如何高效解决环境配置中的"地狱级"依赖问题
-
数据标注的两种工具对比与实战选择策略
-
数据集划分的工程化最佳实践
-
模型训练的超参数调优与结果分析
-
PyQt5可视化界面的完整集成方案
让我们以火焰检测为例,从零打造一个完整的目标检测系统!
🌟一、环境配置(深度优化版)
1.1 CUDA/cuDNN避坑指南
版本匹配原则:
# 查看GPU型号
nvidia-smi
# 根据型号选择CUDA版本(以RTX 3090为例)
CUDA <