problem
For a decimal number x with n digits (A nA n-1A n-2 … A 2A 1), we define its weight as F(x) = A n * 2 n-1 + A n-1 * 2 n-2 + … + A 2 * 2 + A 1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 10 9)
Output
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 10 9)
Sample Input
3
0 100
1 10
5 100
Sample Output
Case #1: 1
Case #2: 2
Case #3: 13
超时的例子(memset内置)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5000;
ll a[11];
ll dp[11][maxn];
ll SUM;
ll fun(ll n)
{
int pos=0;
while(n)
{
a[pos++]=n%10;
n/=10;
}
ll sum=0;
pos--;
for(int i=pos;i>=0;--i){
//cout<<a[i]<<' ';
sum+=a[i]*(1<<i);
}
//cout<<endl;
return sum;
}
ll dfs(int pos,int sum,bool limit)
{
if(pos==-1){
return (sum<=SUM);
}
if(sum>SUM) return 0;//提前return0
if(!limit && dp[pos][sum]!=-1) return dp[pos][sum];
int up=limit? a[pos] : 9;
ll tmp=0;
for(int i=0;i<=up;i++){
tmp+=dfs(pos-1,sum+i*(1<<pos),limit && i==a[pos]);
}
if(!limit) dp[pos][sum]=tmp;
return tmp;
}
ll solve(ll n)
{
int pos=0;
while(n)
{
a[pos++]=n%10;
n/=10;
}
dfs(pos-1,0,true);
//cout<<fun(pos-1)<<endl;
}
int main()
{
ios::sync_with_stdio(false);
int t,num;
num=0;
ll a,b;
cin>>t;
memset(dp,-1,sizeof(dp));
while(t--)
{
memset(dp,-1,sizeof(dp));//由于每次SUM不同,dfs时记忆的dp[pos][sum]值也就不同,所以每次都要memset,导致超时
num++;
cin>>a>>b;
SUM=fun(a);
//solve(b)-solve(0);
//cout<<SUM<<endl;
cout<<"Case #"<<num<<": "<<solve(b)<<endl;
}
return 0;
}
思路
由于每次SUM不同,dfs时记忆的dp[pos][sum]值也就不同,所以每次都要memset,导致超时。(在某个SUM下,可能当前的sum是小于它的,但换个SUM,就大于了,显然状态要重新记。)
考虑,在没有限制(!limit)的情况下,SUM-sum这个标准对所有样例是一样的。由于没有限制指的就是后面位(低位)任意取,而对不同的SUM和sum,这个差值对应的dp值是一模一样的。因为大家都没有限制嘛,而后面的位数又是一致的。
因此可以将memset外置,降低了时间复杂度。
代码示例
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e4+5;
ll a[20];
ll dp[20][maxn];
ll SUM;
ll fun(ll n)
{
int pos=0;
while(n)
{
a[pos++]=n%10;
n/=10;
}
ll sum=0;
pos--;
for(int i=pos;i>=0;--i){
//cout<<a[i]<<' ';
sum+=a[i]*(1<<i);
}
//cout<<endl;
return sum;
}
ll dfs(int pos,int sum,bool limit)
{
if(pos==-1){
return (sum<=SUM);
}
if(sum>SUM) return 0;//提前return0
if(!limit && dp[pos][SUM-sum]!=-1) return dp[pos][SUM-sum];//用与SUM的差做状态标准
int up=limit? a[pos] : 9;
ll tmp=0;
for(int i=0;i<=up;i++){
tmp+=dfs(pos-1,sum+i*(1<<pos),limit && i==a[pos]);
}
if(!limit) dp[pos][SUM-sum]=tmp;
return tmp;
}
ll solve(ll n)
{
int pos=0;
while(n)
{
a[pos++]=n%10;
n/=10;
}
dfs(pos-1,0,true);
//cout<<fun(pos-1)<<endl;
}
int main()
{
ios::sync_with_stdio(false);
int t,num;
num=0;
ll a,b;
cin>>t;
memset(dp,-1,sizeof(dp));//可以外置
while(t--)
{
num++;
cin>>a>>b;
SUM=fun(a);
//solve(b)-solve(0);
//cout<<SUM<<endl;
cout<<"Case #"<<num<<": "<<solve(b)<<endl;
}
return 0;
}
dfs部分也可以这样写(本质一样)
int dfs(int pos,int sum,bool limit)
{
if(pos==-1) return (sum>=0);
if(sum<0) return 0;
if(!limit && dp[pos][sum]!=-1) return dp[pos][sum];
int up=limit?a[pos]:9;
int ans=0;
for(int i=0;i<=up;++i){
ans+=dfs(pos-1,sum-i*(1<<pos),limit&&i==a[pos]);
}
if(!limit) dp[pos][sum]=ans;
return ans;
}