python是面向对象语言,和所有面向对象语言思想都是一样的,所以学习起来也是很好理解的。本文主要介绍知识点有:类和实例的概念,属性的访问权限,继承的概念,对象信息的获取(java反射),类属性和实例属性。
类和实例
面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。
class Student(object):
pass
student1=Student()
如上代码,类的定义,括号中是继承的父类,如果没有直接父类就填object(一切类的父类),
实例的定义就是类名加括号即可。
访问限制
类中的属性是有访问限制的。不同于java的private,public等,
pyhton中,私有属性前面加__name,比如:
class Student(object):
def fun1(self,name,age):
self.__name=name;
self.age=age
student1=Student()
student1.age=22;
print(student1.age)
# print(student1.__name)
如上,name为私有属性,age为公共属性,此时name不可直接访问赋值,但是age可以
此时,如果想给name赋值怎么办?类似java的set和get处理方式,python也是如此。就不举例了。
继承和多态
class Student(object):
def __init__(self,name,age):
self.__name=name
self.__age=age
class GradeOne(Student):
pass
class GradeTwo(Student):
pass
GradeOne和GradeTwo继承自Student,其子类。此时,子类会拥有父类的属性和方法
当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。多态的定义为:父类引用指向子类对象,不同的子类同一个方法作用会不一样。
获取对象信息
使用type()
首先,我们来判断对象类型,使用type()函数:
>>> type(123)
<class 'int'>
判断基本数据类型可以直接写int,str等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:
>>> import types
>>> def fn():
... pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True
使用isinstance()
对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。
class Student(object):
pass
class GradeOne(Student):
pass
class GradeTwo(Student):
pass
a=Student()
b=GradeOne()
c=GradeTwo()
print(isinstance(a,Student))
结果
True
True
False
使用dir()
如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir('ABC')
['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']
类似xxx的属性和方法在Python中都是有特殊用途的,比如len方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的len()方法
剩下的都是普通属性或方法,比如lower()返回小写的字符串:
>>> 'ABC'.lower()
'abc'
仅仅把属性和方法列出来是不够的,配合getattr()、setattr()以及hasattr(),我们可以直接操作一个对象的状态:
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
如果试图获取不存在的属性,会抛出AttributeError的错误:
>>> getattr(obj, 'z') # 获取属性'z'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'
可以传入一个default参数,如果属性不存在,就返回默认值:
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404
也可以获得对象的方法:
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81
实例属性和类属性
由于Python是动态语言,根据类创建的实例可以任意绑定属性。(java只有类属性,没有实例属性)
给实例绑定属性的方法是通过实例变量,或者通过self变量:
class Student(object):
def __init__(self, name):
self.name = name
s = Student('Bob')
s.score = 90
不同实例属性互不干扰。
使用__slots__
正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。
class Student:
name=""
a=Student()
a.name=2
a.age=3
print("%s,%d"%(a.name,a.age))
name是类的属性,但是对象a自己临时生成一个属性age,称为实例属性,只有对象a可以访问该属性,其他实例访问会报错。
但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name和age属性。
为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的slots变量,来限制该class实例能添加的属性:
class Student:
__slots__ = ('name','age')
a=Student()
a.name='wy'
a.age=3
a.sex=1
此时,属性sex会报错,name和age则是允许的。
使用@property
@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:
class Student:
@property
def name(self):
return self.name
@property.setter
def name(self,value):
self.name=value
定制类
看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的,类似java方法重写
__str__,print函数调用的方法
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)
__iter__
如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。
例如:
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration()
return self.a # 返回下一个值
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025