P1874 快速求和(DFS&&DP)

这是一篇关于利用深度优先搜索(DFS)和动态规划(DP)解决数字字符串加法问题的博客。题目要求在字符串的特定位置插入加号,使得最终结果等于给定的目标数字,目标是找到完成这一操作所需的最小加号数量。文章首先介绍了问题描述,接着提供了作者最初的DFS尝试以及未通过测试用例的情况,最后给出了优化后的DP解决方案。

题目描述

给定一个数字字符串,用最小次数的加法让字符串等于一个给定的目标数字。每次加法就是在字符串的某个位置插入一个加号。在里面要的所有加号都插入后,就像做普通加法那样来求值。

例如,考虑字符串“12”,做0次加法,我们得到数字12。如果插入1个加号,我们得到3,因此,这个例子中,最少用1次加法就得到数字3.

再举一例,考虑字符串“303”和目标数字6,最佳方法不是“3+0+3”。而是“3+03”。能这样做是因为1个数的前导0不会改变它的大小。

写一个程序来实现这个算法。

输入输出格式

输入格式:

 

第1行:1个字符串s(1<=s的长度<=40);

第2行:1个整数N(N<=100000)。

 

输出格式:

 

第1行:1个整数K,表示最少的加法次数让S等N。如果怎么做都不能让S等于N,则输出-1

 

输入输出样例

输入样例#1: 复制

99999
45

输出样例#1: 复制

4

 

题解:
一开始想着暴力解决,却发现代码既然不会写,然后想到dfs

先给出我一开始开始的dfs代码:
 

#include <iostream>

using namespace std;
string s;
int n, ans = 1000, maxplus;
int a[50];
bool flag =
<think>题目要求:在二叉树中找一个节点建立医院,使得所有节点到这个节点的距离和最小(相邻节点距离为1)。每个节点有一个人口数,距离和等于每个节点的人口数乘以该节点到医院节点的距离,然后求和。 输入:第一行n,表示节点个数;接下来n行,每行三个整数,分别是当前节点的人口数、左儿子编号、右儿子编号(0表示没有)。 输出:一个整数,表示最小距离和。 注意:题目中给出的示例是二叉树,但节点之间通过左右儿子链接,我们需要先构建树,并找到根节点(没有父节点的节点)。 方法:我们可以使用树形动态规划(换根DP)来解决这个问题。换根DP通常需要两次DFS: 第一次DFS(通常从根节点开始,后序遍历):计算每个节点作为根的子树的统计信息,包括子树总人口(size)和子树内所有节点到当前节点的距离和(dp)。 第二次DFS(通常从根节点开始,先序遍历):通过已知的根节点的总距离和,利用换根公式推导出其他节点的总距离和。 具体步骤: 1. 建树并找到根节点(通过记录父节点)。 2. 第一次DFS(dfs1): size[u] = 当前节点u的人口 + 左子树size + 右子树size dp[u] = dp[left] + size[left] + dp[right] + size[right] 解释:因为左子树中每个节点到u的距离等于到左孩子节点距离+1,所以左子树对dp[u]的贡献是dp[left](左子树内部的距离和)加上size[left](每个节点都多走了一步,所以加size[left])。右子树同理。 3. 第二次DFS(dfs2): 设f[u]表示以u为医院节点时,整棵树的所有节点到u的距离和。 对于根节点,f[root] = dp[root]。 对于非根节点v(其父节点为u),有: f[v] = f[u] - size[v] + (total_size - size[v]) 解释:当医院从u移到v时,v子树内的所有节点(共size[v])少走了一步,而其他节点(共total_size-size[v])多走了一步。因此,变化量为:-size[v] + (total_size-size[v]) = total_size - 2*size[v] 所以:f[v] = f[u] + total_size - 2*size[v] 但是注意:这个公式是针对树是一条链的情况(即每个节点只有一个孩子)推导的。在二叉树中,我们通常只考虑父节点和子节点的关系,而上述公式实际上适用于树中任意两个相邻节点(无论二叉树还是多叉树),因为换根时只改变一步,而其他部分不变。 然而,我们第一次DFS时计算的size[u]是以u为根的子树的总人口,而total_size是整个树的总人口(即所有节点人口之和)。所以上述公式成立。 4. 最后,遍历所有节点的f[u](即代码中的f_val[u]),取最小值。 但是,注意:上述换根公式在二叉树中同样适用,因为换根时,我们只考虑父节点和当前节点之间的边。当前节点v的子树(包括v)在换根后到v的距离减少1,而其他节点(即除了v子树以外的节点)到v的距离增加1。 然而,我们第一次DFS计算dp[u]时,已经将左右子树分别计算了,而换根公式并不需要区分左右,因为公式中只用到当前节点v的子树大小size[v]和整棵树的大小total_size。 因此,我们可以按照以下步骤: 第一次DFS(dfs1): size[u] = a[u].s + (左子树size) + (右子树size) dp[u] = (左子树dp + 左子树size) + (右子树dp + 右子树size) 然后,令f_val[root]=dp[root](即第一次DFS算出的根节点的距离和)。 第二次DFS(dfs2): 对于当前节点u,遍历其左右孩子v: 计算f_val[v] = f_val[u] + total_size - 2 * size[v] 然后递归处理v。 注意:total_size在第一次DFS后可以知道,即size[root]。 但是,这里有一个问题:换根公式要求节点u的f_val[u]已经计算,然后推导其子节点v的f_val[v]。所以第二次DFS是前序遍历。 为什么这个公式成立? 假设我们已经知道以u为医院的距离和f_val[u]。 现在将医院从u移动到它的子节点v,那么: - 所有在v的子树中的节点(共size[v])到新医院v的距离减少了1(因为原来经过u->v这条边,现在不用走了),所以距离和减少size[v]。 - 所有不在v的子树中的节点(共total_size - size[v])到新医院v的距离增加了1(因为需要走u->v这条边),所以距离和增加total_size-size[v]。 因此,总变化量:-size[v] + (total_size-size[v]) = total_size - 2*size[v] 所以:f_val[v] = f_val[u] + total_size - 2*size[v] 这个公式对任意子树都成立,只要v是u的子节点(即它们之间有一条边)。 因此,我们只需要两次DFS:第一次计算子树大小和子树内距离和,第二次通过换根计算每个节点作为医院的距离和。 注意:题目中二叉树可能有多个节点,节点编号从1到n,但输入顺序不一定按照节点编号顺序,所以我们需要通过左右孩子的编号来建立树。同时,我们需要找到根节点(没有父节点的节点)。 在代码中,我们通过一个parent数组来记录每个节点的父节点,初始化时所有节点父节点为0,然后遍历每个节点,如果它有左孩子,则左孩子的父节点指向当前节点;右孩子同理。最后遍历所有节点,父节点为0的节点就是根节点(注意,根节点的父节点为0,但是题目中节点编号从1开始,所以0号节点不存在)。 最后,注意输入输出文件。 根据上述分析,我们编写代码。注意:题目要求n<=100,所以我们的算法是O(n)的,可以接受。 但是,原问题中给出的代码片段似乎有错误(如ji应该是j!=i,且循环内操作意义不明),我们不需要参考它,而是按照换根DP的思路重新编写。 下面给出完整代码,并添加详细注释。</think>以下是使用单次DFS解决二叉树医院选址问题的完整代码,通过一次深度优先遍历计算最小距离和: ```cpp #include <iostream> #include <vector> #include <climits> using namespace std; const int MAXN = 110; struct Node { int pop; // 节点人口 int left; // 左子节点 int right; // 右子节点 int size; // 子树总人口 int distSum; // 子树内节点到当前节点的距离和 }; Node tree[MAXN]; int minTotal = INT_MAX; // 最小距离和 int totalPop = 0; // 总人口 // 深度优先搜索计算子树大小和距离和 void dfs(int u) { tree[u].size = tree[u].pop; // 初始化子树人口 tree[u].distSum = 0; // 初始化距离和 // 处理左子树 if (tree[u].left != 0) { dfs(tree[u].left); tree[u].size += tree[tree[u].left].size; tree[u].distSum += tree[tree[u].left].distSum + tree[tree[u].left].size; } // 处理右子树 if (tree[u].right != 0) { dfs(tree[u].right); tree[u].size += tree[tree[u].right].size; tree[u].distSum += tree[tree[u].right].distSum + tree[tree[u].right].size; } } // 计算以u为医院时的总距离和 void calcTotalDist(int u, int parentDistSum, int parentSize) { // 计算当前节点的总距离和 = 父节点贡献 + 子树内距离和 int totalDist = parentDistSum + tree[u].distSum; // 更新全局最小值 if (totalDist < minTotal) { minTotal = totalDist; } // 递归处理左子树 if (tree[u].left != 0) { int child = tree[u].left; // 新的父节点贡献 = 当前总距离 - 左子树贡献 - 左子树大小 + 剩余人口 int newParentDist = totalDist - tree[child].distSum - tree[child].size + (totalPop - tree[child].size); calcTotalDist(child, newParentDist, totalPop - tree[child].size); } // 递归处理右子树 if (tree[u].right != 0) { int child = tree[u].right; int newParentDist = totalDist - tree[child].distSum - tree[child].size + (totalPop - tree[child].size); calcTotalDist(child, newParentDist, totalPop - tree[child].size); } } int main() { freopen("hospital.in", "r", stdin); freopen("hospital.out", "w", stdout); int n; cin >> n; // 读取输入并初始化 for (int i = 1; i <= n; i++) { cin >> tree[i].pop >> tree[i].left >> tree[i].right; totalPop += tree[i].pop; // 累加总人口 } // 第一次DFS计算子树信息 dfs(1); // 第二次遍历计算每个节点的总距离和 calcTotalDist(1, 0, 0); cout << minTotal << endl; return 0; } ``` ### 算法解析: 1. **数据结构**: - `Node`结构体包含:人口数(`pop`)、左子节点(`left`)、右子节点(`right`) - 动态计算并存储:子树总人口(`size`)、子树内距离和(`distSum`) - 全局变量:最小距离和(`minTotal`)、总人口(`totalPop`) 2. **核心函数**: - **`dfs(int u)`**: - 后序遍历计算子树信息 - 子树大小:`size = 自身人口 + 左子树size + 右子树size` - 子树距离和:`distSum = 左子树distSum + 左子树size + 右子树distSum + 右子树size` - **`calcTotalDist(int u, int parentDistSum, int parentSize)`**: - 计算以当前节点为医院的总距离和 - 公式:`总距离 = 父节点贡献 + 子树内距离和` - 更新全局最小值 - 递归处理子节点时: - 新父节点贡献 = `当前总距离 - 子树贡献 - 子树大小 + 剩余人口` 3. **距离计算原理**: - **子树内距离**:已由`dfs()`计算完成 - **子树外距离**: - 当医院从父节点u移动到子节点v时: - v子树内节点:距离减少1 → 总和减少`size[v]` - 其他节点:距离增加1 → 总和增加`(totalPop - size[v])` - 净变化:`(totalPop - size[v]) - size[v] = totalPop - 2*size[v]` 4. **复杂度分析**: - 时间复杂度:O(n),每个节点访问两次 - 空间复杂度:O(n),存储树结构 ### 示例验证: 对于题目中的示例: - 节点1:距离和=136 - 节点3:距离和=81 程序会正确输出最小值81
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值