Spark SQL操作Spark Streaming

该博客介绍了一个使用Spark Streaming从指定socket源获取数据,通过flatMap、map和reduceByKey进行数据预处理,然后将DStream转换为DataFrame并利用Spark SQL进行查询展示的实时数据处理流程。此示例展示了如何在Spark Streaming应用中结合Spark SQL进行复杂的数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

操作思路

  • 先获取每个批次DStream中的RDD
  • 将RDD转为DataFrame

代码

  def main(args: Array[String]): Unit = {
    val conf: SparkConf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[*]")
    val ssc = new StreamingContext(conf,Seconds(3))
    //接收数据
    val dataDStream: ReceiverInputDStream[String] = ssc.socketTextStream("hadoop01", 8888)
    //处理数据
    val resDStream: DStream[(String, Int)] = dataDStream.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
    //创建SparkSession对象
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
    import spark.implicits._

    //操作每个rdd,然后使用spark sql
    resDStream.foreachRDD(
      rdd => {
        val df: DataFrame = rdd.toDF("word","count")
        df.createOrReplaceTempView("t1")
        spark.sql("select * from t1").show()
      }
    )

    //开启采集
    ssc.start()
    ssc.awaitTermination()

  }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值