win10下用tensorflow_gpu-1.12.0入门MNIST避坑备忘录

本文详细记录了在Win10系统中,使用Python3.6.7和Pycharm2018.2.4,基于tensorflow_gpu-1.12.0进行MNIST手写数字识别的步骤。首先介绍了Python和Pycharm的配置安装,然后详细讲述了如何安装tensorflow_gpu-1.12.0。主要内容包括MNIST数据集的获取,Softmax回归模型的建立,以及遇到的更新提示问题的解决。最后,通过构建多层卷积网络,提高了模型的准确率至91%以上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础环境:Win10、Python3.6.7、Pycharm2018 2.4、tensorflow_gpu-1.12.0

Python与Pycharm配置安装:https://blog.csdn.net/Fowee/article/details/83048154

tensorflow_gpu-1.12.0安装:https://blog.csdn.net/Fowee/article/details/84983245

主要参考:http://www.tensorfly.cn/tfdoc/tutorials/overview.html

-----------------------------------------------------------------------------------------------------------------------------

MNIST 一开始就被 input_data.py 这个给打击了,我将 input_data.py 代码 copy 在这

input_data.py 是  “下载用于训练和测试的MNIST数据集的源码” 

MNIST 四个数据集,可以通过下列代码下载(网络慢的话可以手动下载)

input_data 是TensorFlow 自带的案例库,可直接引用,也可以手动下载使用

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
from myMNIST import input_data
mnist = input_data.read
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值