识别栅格数据

## 1 将GDAL库引入
# import gdal
from osgeo import gdal

## 2 打开栅格数据
rds = gdal.Open("./geotiff_file.tif")

## 3 获取栅格数据信息
img_Info = rds.GetDescription()

# 3.1 栅格数据波段数目
img_band = rds.RasterCount
# 3.2 栅格数据影像行列数
img_width, img_height = rds.RasterXSize, rds.RasterYSize
# 3.3 获得空间参考
# 注:对于遥感影像来说,获取空间参考需要在地理空间中进行定位,返回六个参数,分别代表:
# 栅格左上角X方向坐标,X方向分辨率,X方向旋转角度、栅格左上角Y方向坐标,,Y方向旋转角度,Y方向分辨率,
img_Geo = rds.GetGeoTransform()

# 3.4 获得投影信息
img_Pro = rds.GetProjection()

## 4 获取影像波段信息
# 4.1 选择数据集的第一个波段
band = rds.GetRasterBand(1)
# 4.2 获取波段的行列数目
band_XSize = band.XSize
band_YSize = band.YSize
# 4.3 获取波段数据类型,其中0代表未知类型,1代表8位无符号整型,2代表16位无符号整型
band_Type = band.DataType
# 4.4 获取波段最大值和最小值
band_Max = band.GetMaximum()
band_min = band.GetMinimum()

## 5 以数组形式获取影像数据
#from numpy import *
# 获取影像左上角(100, 100),宽高为3个像元的数据
img_Array = rds.ReadAsArray(100, 100, 3, 3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fre6d0M

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值