自定义source-kafka

本文详细介绍了如何从头开始创建一个自定义的Kafka源,涵盖了设置步骤、配置选项以及在实际应用中集成的方法,帮助读者理解并实现自己的数据摄入解决方案。
package com.qianfeng.stream

import java.util.Properties

import org.apache.flink.api.common.serialization.{DeserializationSchema, SimpleStringSchema}
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.api.scala._
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer09}

/**
 * 1、使用flink-kafka的通用(kafka版本大于0.11以后的,依赖没有版本标识)的依赖后依赖以后,,
 *    不需要加入kafka的单独依赖。否则包冲突
 * 2、如果flink-kafka依赖小于0.11以前的,可以加入kafka对应的单独依赖,不会冲突,但没必要单独依赖
 * 3、总结:引入flink-kafka依赖,都不建议单独引入kafka依赖,因为源码里面有单独依赖。
 */
object Demo05_Stream_Kafkasource {
  def main(args: Array[String]): Unit = {
    //1、获取流式执行环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    //2、自定义sourcefunction
    val props: Properties = new Properties
    val topic = "test"
    
    //将资源目录下的配置文件装载到Properties实例中,封装了和kafka服务器连接的参数信息
    props.load(this.getClass.getClassLoader.getResourceAsStream("consumer.properties"))

   //kafka1.0+的整合依赖  //读数据出来必须使用反序列化new SimpleStringSchema()
   //val res: DataStream[String] = env.addSource(new FlinkKafkaConsumer(topic, new SimpleStringSchema(), props))
    //kafka-0.9的整合依赖
    val res: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(topic, new SimpleStringSchema(), props))
    dstream1.print("kafka source->")

    //5、触发执行
    env.execute("kafka source")
  }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值