package com.qianfeng.stream
import java.util.Properties
import org.apache.flink.api.common.serialization.{DeserializationSchema, SimpleStringSchema}
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.api.scala._
import org.apache.flink.streaming.connectors.kafka.{FlinkKafkaConsumer09}
/**
* 1、使用flink-kafka的通用(kafka版本大于0.11以后的,依赖没有版本标识)的依赖后依赖以后,,
* 不需要加入kafka的单独依赖。否则包冲突
* 2、如果flink-kafka依赖小于0.11以前的,可以加入kafka对应的单独依赖,不会冲突,但没必要单独依赖
* 3、总结:引入flink-kafka依赖,都不建议单独引入kafka依赖,因为源码里面有单独依赖。
*/
object Demo05_Stream_Kafkasource {
def main(args: Array[String]): Unit = {
//1、获取流式执行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//2、自定义sourcefunction
val props: Properties = new Properties
val topic = "test"
//将资源目录下的配置文件装载到Properties实例中,封装了和kafka服务器连接的参数信息
props.load(this.getClass.getClassLoader.getResourceAsStream("consumer.properties"))
//kafka1.0+的整合依赖 //读数据出来必须使用反序列化new SimpleStringSchema()
//val res: DataStream[String] = env.addSource(new FlinkKafkaConsumer(topic, new SimpleStringSchema(), props))
//kafka-0.9的整合依赖
val res: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(topic, new SimpleStringSchema(), props))
dstream1.print("kafka source->")
//5、触发执行
env.execute("kafka source")
}
}
自定义source-kafka
最新推荐文章于 2024-11-24 19:07:05 发布
