柠檬水找零(贪心)

问题描述

问题:在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。
每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。
注意,一开始你手头没有任何零钱。
给你一个整数数组 bills ,其中 bills[i] 是第 i 位顾客付的账。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。

这道题是leetcode里面的题目:
在这里插入图片描述

解题思路

考虑用贪心策略来求解问题:
找零会遇到三种情况,分别是对5美元找零、对10美元找零、对20美元找零。

  • 五美元:无需要找零,五美元+1
  • 十美元:找五美元,十美元+1
  • 二十美元:找三张五美元或者找一张十美元一张五美元,二十美元+1

可以看到我们的找零策略只有一种分支情况,可以发现我们五美元在找零十美元和二十美元时都是需要用到的,因此我们可以认为5美元更有价值。或者从另一个角度来看,十美元只有在二十美元找零的情况下才需要用到,因此10美元可以考虑优先找出。
那么我们的贪心策略就是,找零二十美元时,优先考虑10+5的组合。

算法实现

class Solution {
public:
    bool lemonadeChange(vector<int>& bills)
    {
        vector<int>moneny(2);
        for (auto& e : bills)
        {
            if (e == 5)
                moneny[0]++;
            else if (e == 10)
            {
                moneny[0]--;
                moneny[1]++;
            }
            else
            {
                moneny[0]--;
                if (moneny[1])moneny[1]--;
                else moneny[0] -= 2;
            }
            if (moneny[0] < 0)return false;
        }
        return true;
    }
};

正确性证明

我们这里采取交换论证法,如果可以将最优策略转化为贪心策略,那就证明了这个算法的正确性。
最优策略: a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an
贪心策略: b 1 , b 2 , . . . , b n b_1,b_2,...,b_n b1,b2,...,bn
这里的项表示找零的方法,又因为最优策略和贪心策略对于5美元、10美元的找零策略相同,故只需要考虑对20美元的找零策略。

又因为最优策略中对于20美元的找零方案只有10+5和5+5+5,考虑am是首个5+5+5的策略。这时对应的贪心策略为10+5.

也就是最优策略省下了10美元没用,现在分两种情况:

第一种,最优策略在后续的找零策略中依然没使用这10美元。很显然我们可以将am置换为5+5+5,结果依然正确,即我们将最优策略转化为了贪心策略。

第二种,an,n>m使用了10+5方案,那我们可以交互am和an的位置。然后再对an讨论两种情况。

综上,我们将最优策略转换成了贪心策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值