- 博客(124)
- 收藏
- 关注
原创 LLaMA-Factory 基于 LoRA 的 SFT 指令微调及相关功能梳理
自动评估模型生成效果,计算文本生成指标(如 BLEU 和 ROUGE)。微调完成后,可以动态加载 LoRA 微调结果,验证模型效果。文件,将数据集注册到系统中。
2024-12-17 10:49:04
1657
原创 LLaMA-Factory QuickStart 流程详解
LLaMA-Factory 是一个整合主流高效训练与微调技术的框架,支持主流开源大模型(如 LLaMA、Qwen、Baichuan 等),提供便捷的接口和工作台,降低大模型微调门槛。确保硬件环境满足需求(如 RTX 3090/4090)。LLaMA-Factory 支持。
2024-12-17 10:47:10
1403
原创 Neo4j 构建文本类型的知识图谱
使用 Neo4j 构建文本类型的知识图谱的核心步骤包括文本数据的预处理、实体和关系的提取、将数据导入图数据库,以及利用 Cypher 进行查询和分析。通过结合 NLP 技术,能够从文本中自动提取出有价值的信息,并构建一个高效的图结构,以支持复杂的查询和知识发现。
2024-10-16 22:26:11
1539
2
原创 Python--WinError 2 的常见解决方案
报错信息:FileNotFoundError: [WinError 2] 系统找不到指定的文件。这个错误提示说明在调用时,系统找不到指定的文件或可执行程序。在代码中,这个问题主要是因为找不到 Java JAR 文件,也就是用于计算 METEOR 分数的评估工具。
2024-10-14 08:15:41
3449
原创 T5--详解
T5的架构基于,并且与BERT、GPT不同,它是一个Encoder-Decoder(编码器-解码器)结构。它主要用于生成任务,如摘要、翻译、问答、生成式文本分类等。T5 是一种功能强大且灵活的Transformer模型,它能够统一处理各种NLP任务,并通过预训练在大规模数据集上取得了卓越的性能。其“文本到文本”的框架让T5在文本生成、翻译、分类、问答等多种任务上表现优异。通过Hugging Face的库,可以方便地加载和使用T5模型来处理各种NLP任务。
2024-10-12 08:27:19
2722
原创 GRU--详解
# 超参数output_size = input_size # 输出大小和输入大小相同,都是字符集大小# 损失函数和优化器GRU 是一种强大的循环神经网络架构,在处理序列数据(如文本生成、语言模型等)时非常有效。其结构相比 LSTM 简化了门控机制,但仍能有效捕捉长时间依赖。通过PyTorch等框架,可以快速构建并训练GRU模型,并应用于诸如文本生成等任务。
2024-10-10 12:33:12
2985
原创 BART--详解
# 加载BART分词器和预训练的文本摘要模型# 输入待生成摘要的长文本text = """"""# 对输入文本进行编码# 使用BART进行文本摘要生成# 解码生成的摘要文本BART模型概述:BART是结合了BERT和GPT优势的序列到序列生成模型,广泛用于文本生成任务,如摘要、翻译、对话生成等。基本结构:由双向编码器(类似BERT)和自回归解码器(类似GPT)组成。通过多种扰动输入的方法进行去噪自编码器训练。经典代码:使用Hugging Face的。
2024-10-10 12:28:53
2400
原创 BERT--详解
BERT模型概述:BERT是基于Transformer的双向预训练模型,擅长捕捉上下文语义信息,广泛应用于NLP任务。基本结构:主要由输入层、多层Transformer Encoder组成,通过MLM和NSP进行预训练。经典代码:使用Hugging Face的库,简单实现BERT的文本处理。生成任务示例:尽管BERT主要用于理解任务,但可以通过MLM进行词填充等简单生成任务。
2024-10-08 14:00:14
1815
原创 Transformer--详解
Transformer凭借其并行化的结构、自注意力机制以及位置编码技术,能够非常有效地处理长距离依赖问题。它被广泛应用于各类自然语言处理任务,尤其是在大规模预训练语言模型中(如BERT、GPT等)。
2024-10-08 13:56:59
1261
原创 Python--解决占用重复内存问题
通过 TrainingArguments 设置 save_safetensors=False 来禁用 safetensors,这样可以避免共享张量保存时引发的错误。如果希望手动控制模型保存,也可以调用 model.save_pretrained() 来保存模型。
2024-10-07 10:54:34
1687
原创 LSTM--详解
LSTM作为递归神经网络的一种,专门用于处理长依赖序列问题,因其在许多任务中(如自然语言处理、时间序列预测等)表现优异,成为了深度学习领域的重要模型之一。
2024-10-07 08:50:35
2032
1
原创 RNN--详解
循环神经网络 (Recurrent Neural Network, RNN) 是一种专门用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN 具有循环结构,能够处理时间序列和其他顺序依赖的数据。其关键在于可以利用前一个时刻的信息,通过隐状态 (Hidden State)在时间步长上进行传递,从而具有记忆性。下面的代码定义了一个基本的 RNN 模型。使用一个嵌入层和一个简单的 RNN 层来对文本进行分类。输出的隐藏状态将传递到全连接层来预测情感标签。# 嵌入层# RNN层# 全连接层。
2024-10-07 08:40:24
1025
原创 Python 基础知识点详细整理
简介:解释 Python 的特点,解释其跨平台性、解释性和面向对象特性。安装与配置:如何安装 Python,搭建 Python 环境,使用pip安装库。集成开发环境 (IDE):如 PyCharm、VSCode、Jupyter 等的使用。
2024-10-06 14:50:34
1035
原创 解决Transformer训练中GPT-2模型报错:样本填充问题与tokenizer冲突处理
这个问题是因为GPT-2模型在设计时没有为填充(padding)定义一个专用的填充标记(pad token)。由于GPT-2是基于自回归的结构,它在训练时不需要像BERT那样进行填充。要解决这个问题,可以手动为GPT-2设置一个填充标记(pad token)并相应调整填充行为。
2024-10-06 14:17:01
1003
原创 深度学习--自动化打标签
数据准备:人工标记一部分数据,并分成训练集和验证集。模型微调:通过羊驼模型微调,让模型学习数据的标签分布。预测与对比:模型在验证集上进行预测,并与人工标签对比,使用准确率和 F1-score 等指标评估模型性能。自动打标签:模型通过自动化方式对未标注数据进行打标签。通过这种方法,能够有效利用大模型进行大规模数据的标签生成,同时减少人工标注的成本和工作量。
2024-10-03 19:39:54
2735
原创 在Conda环境中,查看某个包是否安装的方式
这些方法可以快速确定某个包是否已经在 Conda 环境中安装。打开终端或命令提示符(确保激活了对应的 Conda 环境)。conda list | grep 包名。conda activate 你的环境名。对于 Windows 用户,可以使用。如果包已安装,会显示已安装的版本。conda search 包名。conda list 包名。>>> import 包名。如果包不存在,将会收到。
2024-10-03 19:26:38
2676
原创 LLM-in-the-loop:数据集构建
通过上述过程,能够在LLM-in-the-loop数据构建过程中,逐步利用人工标注数据引导模型,通过不断的标注与微调循环,使模型逼近人工标注效果。
2024-10-03 12:55:49
910
原创 Python--解决从Hugging Face的服务器下载某个预训练模型或其相关的文件问题
一.错误信息:ValueError: Connection error, and we cannot find the requested files in the cached path. Please try again or make sure your Internet connection is on.这个错误信息表明正在尝试从 Hugging Face 的服务器下载某个预训练模型或其相关的文件,但由于网络连接问题无法成功下载,也无法从缓存中找到该文件。
2024-10-03 12:49:54
1801
原创 Python--导入模块报错处理
根据需要替换 openai_object 的用法,例如 openai.OpenAIObject 等。pip install openai==<目标版本号>错误,并使代码正常运行。如果仍然无法解决,建议参考。文件的依赖信息,进一步排查问题源头。通过这些步骤,可以有效地解决。库的官方文档,或查看。
2024-10-03 12:37:19
1362
原创 Python--加载Hugging Face模型文件异常处理
检查网络连接。如果需要离线使用,确保正确配置了离线模式和本地文件路径。确认传递给的路径或模型名称是正确的。按照上述步骤逐一排查问题,应该能够解决这个错误。
2024-10-03 12:29:26
1443
原创 Python--CUDA安装异常处理
通常是由于没有正确安装 CUDA 支持的深度学习框架,或者系统的 CUDA 环境配置有问题。通过重新安装支持 CUDA 的版本、检查 CUDA 和 cuDNN 安装、确保 GPU 驱动正常运行,应该能解决这个问题。
2024-10-03 12:24:27
4054
原创 WSL--安装各种软件包
在 WSL 中,可以通过使用 Linux 的包管理器(例如apt,适用于基于 Debian 的发行版,如 Ubuntu)来安装各种软件包。以下是常见的安装步骤和命令,假设使用的是 Ubuntu(如果是其他 Linux 发行版,请根据相应的包管理器进行调整,例如 Fedora 使用dnf,Arch 使用pacman。
2024-10-02 21:04:51
2238
原创 解决:进入 WSL(Windows Subsystem for Linux)以及将 PyCharm 2024 连接到 WSL
通过以上步骤,就可以通过命令行进入 WSL 并将 PyCharm 2024 连接到 WSL,从而在 Windows 中体验完整的 Linux 开发环境。PyCharm 支持通过 WSL 运行项目。可以将 PyCharm 连接到 WSL,方便在 Linux 环境中运行代码和调试。WSL 是 Windows 的一个子系统,允许运行 Linux 环境。: 确保已经安装了最新版的 PyCharm 2024。命令进入你想要访问的目录。,可以访问 Windows 文件系统。: 启动 WSL 后,可以通过。
2024-10-02 20:31:51
2060
原创 解决登录wandb问题
如果希望完全避免登录,可以通过设置或使用环境变量来禁用wandb的联网功能。如果想让wandb继续记录日志但不需要登录,可以使用匿名模式。
2024-10-02 16:14:39
1475
原创 参数异常问题解决
确保使用正确的参数名称、版本兼容性以及参考官方文档是避免此类错误的关键步骤。通过上述分析和解决方案,可以更好地排查和解决类似。错误通常出现在实例化一个类时,传入了构造函数(这样修改后,代码将能够正常运行。替换为正确的参数名称。
2024-10-02 10:46:45
944
原创 不同版本的 Selenium 和 WebDriver 的 API 兼容性问题
TypeError: __init__() got an unexpected keyword argument 'executable_path' 是一个常见的错误,通常出现在使用 Selenium 自动化测试工具时。此错误通常是由于不同版本的 Selenium 和 WebDriver 的 API 变化引起的。
2024-10-02 10:41:15
1745
原创 使用 Docker 构建 LLaMA-Factory 环境
使用 Docker 构建 LLaMA-Factory 环境可以简化依赖安装和环境配置。
2024-10-01 20:47:03
6037
原创 Python--读取文件时出现的报错
在使用 Python 读取文件时,尤其是涉及到文件编码的场景,常常会遇到编码解码问题。常见的编码问题主要发生在尝试解码不同编码格式的文件时,比如将使用 GBK 编码的文件按 UTF-8 解码,或者相反。通过这些方法,能够有效地应对各种文件解码错误,确保程序的稳定性和文件读取的完整性。print(f"检测到的编码格式: {encoding}")print("解码错误,尝试其他编码格式")
2024-09-16 15:29:22
1796
原创 Python--解决安装 fasttext 库出现的异常
通过运行,可以解决的问题。如果遇到安装问题,可以尝试使用或者先安装setuptools和wheel。
2024-09-16 13:10:48
817
原创 Python--常见的数据格式转换
这些示例展示了如何在不同常见数据格式之间进行转换,包括 CSV、JSON、XML 和 YAML。这些操作在数据处理、配置文件转换、数据导入导出等任务中非常常用。
2024-09-16 10:20:39
1076
原创 Python--数据格式转换
在 Python 中,数据格式转换是非常常见的任务。我们可以使用内置的模块如json或者pandas来进行格式转换。你提到的.jsonl文件(JSON Lines)是每一行都是一个 JSON 对象的文件格式,而.json是标准的 JSON 文件格式。
2024-09-16 10:17:16
1656
原创 Python--编码解码报错
明确文件编码:确保你正在使用正确的编码格式读取文件,常见格式有 UTF-8、GBK 等。处理解码错误:通过忽略无法解码的字符,或者使用替换这些字符,以确保程序的稳定性。尝试不同编码:如果 GBK 或 UTF-8 都无法正确解码,尝试其他编码格式如latin-1。自动检测编码:通过第三方库如chardet自动检测文件编码,避免手动猜测编码格式。这些方法能够有效解决的问题,并确保程序可以处理各种不同编码的文件。
2024-09-16 09:56:46
1468
原创 BART&BERT
model_name = "facebook/bart-large-cnn" # 选择一个BART模型,这里使用CNN新闻摘要任务的预训练模型。尽管BART和BERT在设计和应用上有所不同,但它们都利用了Transformer的强大能力来处理自然语言,并在NLP领域取得了显著的成果。model_name = "bert-base-uncased" # 选择一个BERT模型。model.eval() # 将模型设置为评估模式。# 加载预训练的BERT模型和分词器。# 加载预训练的BART模型和分词器。
2024-09-15 17:22:56
1799
原创 深度学习--对抗生成网络(GAN, Generative Adversarial Network)
对抗生成网络(GAN)是近年来在生成式模型领域的重要突破,通过生成器与判别器的对抗博弈,GAN能够生成高度逼真的数据。其应用范围广泛,涵盖了图像生成、数据增强、超分辨率重建、风格迁移等多个领域。然而,GAN的训练过程具有挑战性,特别是在平衡两者的对抗关系上仍然存在技术难题。随着技术的不断发展,GAN在生成数据、创造内容等方面的应用前景将更加广阔。
2024-09-07 21:32:30
1755
原创 Python--异常的分类
当在字典中使用一个不存在的键去访问其值时,会触发此异常。在将字节序列解码为 Unicode 字符时,如果字节序列无法用指定的编码解码,会抛出。在将 Unicode 字符编码为字节序列时,如果字符无法用指定的编码表示,会抛出。此异常很少见,通常在浮点计算出现问题时抛出,表明操作产生了一个无效的浮点结果。在将 Unicode 字符转换为其他编码时,如果无法找到对应的字符,会抛出。当执行的数值运算结果超出了 Python 能够表示的范围时,会抛出。当代码中引用了一个未定义的变量时,Python 会抛出。
2024-08-30 08:57:57
1411
原创 Python--ValueError:only one element tensors can be converted to Python scalars解决办法以及扩展-总结
ValueError:only one element tensors can be converted to Python scalars解决办法
2024-08-28 14:30:04
2347
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人