1、 [多选] 以下描述错误的是?
• A : SVM 是这样一个分类器,他寻找具有最小边缘的超平面,因此它也经常被称为最小边缘分类器(minimalmarginclassifier)
• B :在聚类分析中,簇内的相似性越大,簇间的差别越大,聚类的效果越好
• C : 在决策树中,随着树中节点变得太大,即使模型的训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足的问题
• D :聚类分析可以看做是一种非监督的分类
正确答案:A,C
解析:解析:A 选项描述错误,SVM 的目标是寻找具有最大边缘的超平面进行分类;B 选
项描述正确,簇内相似性越大,簇间差别越大是聚类效果好的表现;C 选项描述错误,这
是模型过拟合的表现,即模型在训练集上表现良好但在新数据上表现不佳;D 选项描述正
确,聚类分析是一种非监督的无标签分类方法。因此,答案为 AC。
2、 [多选] 以下说法中正确的是()
• A :SVM 对噪声(如来自其他分布的噪声样本)鲁棒
• B : 在 AdaBoost 算法中,所有被分错的样本的权重更新比例相同
• C :Boosting 和 Bagging 都是