李沐深度学习教程笔记 (1)

本教程提供Mxnet/Gluon的学习资源,包括官方文档网页及GitHub上的项目资料,用户可通过斗鱼平台观看相关内容的直播讲解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 李沐深度学习环境配置安装教程 #### 1. Anaconda 的安装 为了搭建李沐《动手学深度学习》所需的开发环境,首先需要安装 Anaconda。Anaconda 是一个开源的数据科学平台,包含了 Python 和大量的数据处理工具包[^1]。 下载并安装最新版本的 Anaconda 后,可以通过以下方式验证安装是否成功: ```bash conda --version ``` 如果显示 Conda 版本号,则说明安装成功。 --- #### 2. 创建虚拟环境 为了避免不同项目之间的依赖冲突,建议为深度学习项目创建独立的虚拟环境。通过以下命令可以完成虚拟环境的创建: ```bash conda create -n d2l python=3.9 ``` 这里我们将虚拟环境命名为 `d2l` 并指定 Python 版本为 3.9[^4]。 激活该虚拟环境: ```bash conda activate d2l ``` --- #### 3. 配置 PyTorch (支持 GPU 加速) 对于深度学习框架的选择,《动手学深度学习》推荐使用 PyTorch。以下是基于 CUDA 支持的 PyTorch 安装方法: 运行以下命令来安装支持 GPU 的 PyTorch(假设您的显卡驱动已正确安装,并且支持 CUDA 11.0 或更高版本): ```bash conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch ``` 此命令会自动安装与 CUDA 工具链兼容的 PyTorch 及其相关组件[^5]。 如果您不需要 GPU 支持,也可以选择 CPU-only 版本: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` --- #### 4. Jupyter Notebook 的配置 Jupyter Notebook 是一种交互式的编程环境,非常适合用于实验和调试代码。在虚拟环境中启用 Jupyter Notebook: 确保您已经安装了 Jupyter: ```bash conda install jupyterlab ``` 启动 Jupyter Lab: ```bash jupyter lab ``` 当您希望在特定虚拟环境下工作时,可能需要手动加载对应环境中的 kernel。执行如下操作以注册当前虚拟环境到 Jupyter 中: ```bash python -m ipykernel install --user --name=d2l --display-name "Python (D2L)" ``` 这样可以在 Jupyter 界面中看到名为 **Python (D2L)** 的选项[^3]。 --- #### 5. 下载并解压课程资源 访问官方教材地址 https://zh-v2.d2l.ai/ ,找到配套源码链接 `d2l-zh.zip` 文件。将其保存至用户目录下的 “李沐课程” 文件夹中[^2]。 随后解压缩文件: ```bash unzip d2l-zh.zip -d ./d2l-course/ ``` 进入解压后的路径即可查看所有章节对应的代码实现。 --- #### 6. 测试环境是否正常 最后一步是对整个流程进行测试,确认各部分功能无误。打开任意一节练习笔记本文档 `.ipynb` 运行单元格观察是否有错误提示。如果没有异常则表明环境部署完毕! --- ### 总结 以上步骤涵盖了从基础软件准备到具体实践所需的一切环节。按照上述指南逐步实施能够顺利构建适合阅读《动手学深度学习》书籍的学习场所。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值