视觉SLAM学习笔记:g2o位姿优化实战

🔧 一、g2o位姿优化核心概念

  1. 图优化模型

    • 顶点(Vertex):待优化的变量(如相机位姿 SE3、三维点坐标 PointXYZ)。
    • 边(Edge):表示顶点间的约束关系(如重投影误差、里程计相对位姿)。
    • 示例:在SLAM中,相机位姿是顶点,重投影误差(3D点投影到2D的偏差)构成边。
  2. 优化目标
    最小化所有边的误差平方和:
    min ⁡ ∑ i ∥ error i ∥ 2 \min \sum_i \| \text{error}_i \|^2 minierrori2
    常用算法:高斯-牛顿法(Gauss-Newton)或列文伯格-马夸尔特法(Levenberg-Marquardt)。


🛠️ 二、实战步骤详解(以单目BA为例)

步骤1:定义顶点
  • 相机位姿顶点(6自由度,SE3):

    class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
         
         
    public:
        virtual void setToOriginImpl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xMathematics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值