中科院 CASME 表情 数据库 下载教程

CASME Database: A Dataset of Spontaneous Micro-Expressions Collected From Neutralized Faces
论文地址:链接:https://pan.baidu.com/s/1PggKePEXd324YjkX9AVTHA 提取码:npaf
数据下载:链接:https://gitcode.com/Code_Store/Emotion-Recognition-Dataset

CASME (Chinese Academy of Sciences Micro-Expression )是中国科学院心理研究所发布的第一个微表情数据库,旨在为微表情识别和分析研究提供基础数据。微表情是人类在情绪受到抑制时不经意间流露出的短暂面部表情,通常持续时间非常短。CASME 数据库的构建为微表情研究领域提供了宝贵的资源。

CASME 数据库的主要特点

  1. 参与者

    • 共有35名参与者(22名女性和13名男性),年龄范围为22到30岁,都是亚洲人。
    • 这些参与者在录制前都接受了情绪诱导,以确保能够自然流露出微表情。
  2. 数据采集环境

    • 数据采集在一个光照均匀且无干扰的实验室环境中进行,背景为中性色。
    • 使用一台高分辨率相机进行录制,以确保能够捕捉到微表情的细微变化。
  3. 视频质量

    • 视频分辨率为 640×480 像素,帧率为 60 帧/秒。
    • 每段视频都包含了从面部表情变化开始到结束的完整过程。
  4. 微表情标注

    • 所有视频都经过专家标注,并根据参与者的面部动作进行了分类。
    • 情绪类别包括:厌恶、恐惧、快乐、惊讶等,覆盖了常见的基本情绪。
    • 数据集还标注了表情的起止时间、动作单元(Action Units, AU)等详细信息。
  5. 数据量

    • 数据库总计包含195段视频,涵盖了参与者在实验过程中表现出的微表情。

数据库的采集流程

  1. 情绪诱导

    • 通过观看情感视频或图片等方式来诱发参与者的自然情绪反应,从而使他们产生微表情。
  2. 视频录制

    • 在参与者情绪变化时使用高帧率摄像机捕捉面部表情。研究人员确保参与者在录制过程中面部表情尽量自然、没有被意识到。
  3. 数据标注

    • 专家团队根据参与者的面部动作和视频帧标注微表情,并分类到对应的情绪类别。

CASME 的应用

CASME 数据库主要用于:

  • 开发和测试微表情识别算法
  • 研究人类情感表达的微观特征
  • 应用于心理学、安防、刑侦、人机交互等领域

限制与挑战

尽管CASME 为微表情研究提供了宝贵的数据资源,但也存在一些局限性,例如参与者数量有限、文化背景单一、情绪类别较少等。这些因素可能影响算法的泛化能力和跨文化应用。

总的来说,CASME 数据库在微表情研究领域具有里程碑意义,是后续更大规模、更精细数据库(如 CASME II)开发的重要基础。

04-02
### 关于CASME II微表情数据库的技术资料 #### 技术背景 CASME II 是由中科院自动化研究所发布的一个改进型自发性微表情数据库,其设计目标是为了提供更高质量和更大规模的微表情样本用于研究分析[^3]。 #### 数据集特点 该数据集中包含了多种情绪类别下的微表情视频片段,相较于早期版本(如CASME),它提供了更高的分辨率以及更加丰富的标注信息。具体来说,每个样本都经过严格筛选并配有详细的元数据描述,包括但不限于动作单元编码、持续时间等参数。 #### 获取方式 对于希望获取此数据集的研究人员而言,通常需要遵循以下流程来完成下载申请过程: 1. **访问官方网站**: 需要前往官方指定页面提交请求表单。 2. **填写表格**: 提供必要的个人信息及项目简介以便审核团队评估申请人资格。 3. **签署协议书**: 获得批准后需同意相关使用条款以确保资源被正当利用。 4. **接收链接**: 完成上述步骤之后即可得到正式授权并通过邮件或其他渠道获得实际文件地址。 以下是模拟实现读取本地存储图像序列作为输入源的一段Python脚本示例: ```python import cv2 from os import listdir from os.path import isfile, join def load_images_from_folder(folder_path): images = [] onlyfiles = [f for f in listdir(folder_path) if isfile(join(folder_path, f))] for filename in sorted(onlyfiles): # Ensure correct order of frames. img = cv2.imread(join(folder_path,filename)) if img is not None: images.append(img) return images folder_path = './path_to_casmeii_frames/' frames_list = load_images_from_folder(folder_path) print(f'Total number of loaded frames: {len(frames_list)}') ``` 以上代码展示了如何加载来自特定目录下所有图片帧的方法,这对于处理像 CASME II 这样的基于帧的数据非常有用。 #### 注意事项 由于涉及隐私保护等问题,在未取得适当许可之前不得随意传播或公开分享任何部分原始素材内容。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值