生成对抗模型GANs学习初步

这篇博客介绍了生成对抗网络(GANs)的基础知识,包括其无监督学习的特性,以及由生成模型和判别模型构成的对抗过程。文章详细阐述了两个模型的相互作用,并提到在训练过程中如何实现对抗平衡。还提供了使用Minist数据集的示例代码和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成对抗模型GANs浅析


1. GANs全名是Generative Adversarial Networks,是一种无监督学习的网络模型,也是时下非常热门的网络模型。
2. GANs主要分为生成模型Generator和判别模型Discriminator两个模型,对抗主要体现在生成模型和判别模型的相互作用。
  • a. 生成模型主要是基于噪声数据,噪声数据服从一定的概率分布,最常用的是正态分布,来生成假输入数据,判别模型利用假输入数据和数据集中的真实数据来训练一个分类模型,最常见是用于判断真假的二分类模型。判别模型的作用是用于判断输入数据的真假,理想情况是判别模型无法判断真实数据和生成数据的真假,即P(real)=P(fake)=0.5P(real)=P(fake)=0.5P(real

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值