pytorch学习——Softmax与分类模型

本文介绍了Softmax的原理,其在pytorch中的实现以及如何结合交叉熵损失函数进行模型训练和预测。通过训练,模型能够根据样本特征预测类别,并以准确率评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Softmax与分类模型

Softmax原理

softmax通过下式将输出值变换成值为正且和为1的概率分布:

因此softmax运算不改变预测类别输出。
pytorch定义softmax函数如下:

def softmax(X):
    X_exp = X.exp()
    partition = X_exp.sum(dim=1, keepdim=True)
    return X_exp / partition 

定义softmax回归模型:

def net(X):
    return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)

交叉熵损失函数

对于分类问题常用交叉熵损失函数:
在这里插入图片描述

def cross_entropy(y_hat, y):
    return - torch.log(y_hat.gather(1, y.view(-1, 1)))

模型训练和预测

在训练好softmax回归模型后,给定任一样本特征,就可以预测每个输出类别的概率。通常,我们把预测概率最大的类别作为输出类别。使用准确率(accuracy)来评价模型的表现。它等于正确预测数量与总预测数量之比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值