pytorch学习之注意力机制

本文介绍了PyTorch中两种常见的注意力机制——点积注意力和多层感知机注意力,详细阐述了它们的工作原理和应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs)。
在这里插入图片描述
在这里插入图片描述
不同的attetion layer的区别在于score函数的选择,两种常用的注意层 Dot-product Attention 和 Multilayer Perceptron Attention

点积注意力

在这里插入图片描述

class DotProductAttention(nn.Module): 
    def __init__(self, dropout, **kwargs):
        super(DotProductAttention, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)

    # query: (batch_size, #queries, d)
    # key: (batch_size, #kv_pairs, d)
    # va
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值