LangChain搭建

一直在找一个开源的记笔记的软件,偶然看到leanote。竟然还是开源的,还是国人开发的果断mark了。自己在电脑上搭建了一个挺好玩的。可以记录一些不给别人看的小秘密。

下面是步骤记录,当然可以到官网上看,都是中文不存在看不懂!。。。。。

https://github.com/leanote/leanote 可以按照官网的来完全没有问题,可是官网没有说怎样能再次启动环境。自己做了补充

安装步骤:

下载 leanote 二进制版。
安装 mongodb。
导入初始数据。
配置 leanote。
运行 leanote。

1. 下载 leanote 二进制版
http://leanote.org/#download

2. 安装 mongodb

2.1到 mongodb 官网 下载相应系统的最新版安装包。一直点击下一步默认安装。采用默认设置或自定义安装

2.2 测试mongodb安装

在D盘根目录下建立dbanote目录用于放置笔记的数据文件:

直接按WinKey+R, 输入cmd 打开命令行,输入以下命令(mongodb\bin目录下执行命令):

F:\>mongod --dbpath C:\dbanote

此时这个命令行窗口最小化,不要关闭!切记!!!

安装目录bin:\> mongo

行首出现> 表示进入mongo 的交互程序。此时输入:

> show dbs

mongodb 到此安装完成!

3. 导入初始数据
按win+R,输入cmd,回车,打开新的命令行,复制并运行以下命令。注意对应你安装的mongdb的版本:

mongodb v2 的导入命令为:
mongorestore -h localhost -d leanote --directoryperdb C:\user1\leanote\mongodb_backup\leanote_install_data

mongodb v3 的导入命令为:
mongorestore -h localhost -d leanote --dir C:\user1\leanote\mongodb_backup\leanote_install_data

为测试导入数据,继续在导入数据的命令行输入

C:\> mongo
> show dbs # 查看数据库
admin (empty)
leanote 0.078GB # Leanote 导入成功的数据库
local 0.078GB

注意:导入成功的数据已经包含2个用户

user1 username: admin, password: abc123 (管理员, 只有该用户可以管理后台)
user2 username: demo@leanote.com, password: demo@leanote.com (仅供体验使用)

4. 配置leanote

leanote的配置存储在文件 conf/app.conf 中。

请务必修改app.secret一项, 在若干个随机位置处,将字符修改成一个其他的值, 否则会有安全隐患!

其它的配置可暂时保持不变, 若需要配置数据库信息, 请参照 leanote问题汇总。

5. 运行leanote

以 管理员权限 打开cmd,输入:

$> cd C:\users\leanote\bin
$> run.bat

最后出现以下信息证明运行成功:


TRACE 2013/06/06 15:01:27 watcher.go:72: Watching: /home/life/leanote/bin/src/github.com/leanote/leanote/conf/routes
Go to /@tests to run the tests.
Listening on :9000…

恭喜你, 打开浏览器输入: http://localhost:9000 体验leanote吧!

注意!!!

按照本教程启动Mongodb是没有权限控制的, 如果你的Leanote服务器暴露在外网, 任何人都可以访问你的Mongodb并修改, 所以这是极其危险的!!! 请务必为Mongodb添加用户名和密码并以auth启动, 方法请见: 为mongodb数据库添加用户

以上就是官网上的安装教程。

再次打开

先找到你的mongo的安装目录,leanote数据存放目录,和leanote的安装目录。备用

ctrl + R 运行cmd 到mongoDB的bin目录,mongod --dbpath D:\dbanote

LangChain搭建_mongodb

指定数据存放路径

这里的窗口一定不能关闭,程序运行中也不能关闭。

下一步检查mongoDB有没有运行,另开一个窗口。到mongoDB的bin目录,输入mongo 进入交互命令模式下

LangChain搭建_官网_02

下一步启动leanote程序,另开一命令窗口。一定要是用管理员的身份打开

LangChain搭建_mongodb_03

回车后程序就跑起来了。

本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。

  • [](javascript:;)赞
  • [](javascript:;)收藏
  • [](javascript:;)评论
  • [](javascript:;)分享
  • [](javascript:;)举报

上一篇:怎么在乌托邦中打开java

下一篇:stable diffiusion关键词

提问和评论都可以,用心的回复会被更多人看到 评论

发布评论

全部评论 () 最热 最新

相关文章

  • [

    使用​​langchain​​搭建自己的本地知识库系统

    什么是 ​​RAG​​​​RAG​​ 是​​retrieval-augmented-generation​​的缩写,翻译为中文的意思就检索增强,以基于最新,最准确的数据建立​​LLM ​​的语料知识库。​​LLM ​​ 现存的痛点我们知道 ​​LLM ​​的知识库是通过现有的网络公开的数据作为数据源来训练的,现在公开的很多模型他们基于的训练数据会比我们现在网络上公开的数据早很多,那自然就会产生一种问题,网络上最新的数据和知识 ​​LLM ​​是不知道。还有一种情况就是很多企业他们对自己的数据的安全做的很好,也就是私有化数据(这些数据是有价值的,也是企业的立足之本)。这些数据网络上肯定是不存在,那自然 ​​LLM ​​也是不知道的。我们在提问​​LLM​​ 对于一些不知道的知识时候,​​LLM​​ 很多时候是不知道如何回答问题的。甚至会对我们的问题进行胡诌随机回答,也就是瞎说。

    ](https://blog.51cto.com/demo007x/11539629)

    数据 API 数据库

  • [

    D3-基于InternLM和LangChain搭建知识库

    〇、完成结果这里最终完成结果如下:我们可以看到它可以很好地回答InternLM是什么。这一系列的内容是从我们从InternLM开源仓库里面所得到的内容,而不是大模型本身所具有的。即这里一整个过程来使模型能够调用我们本地的个人数据,从而实现一个个人知识库的组成。详细的搭建过程在本文接下来详细的讲解。先简要介绍目前的核心大模型的应用开发范式:输入文本转化为向量,然后在向量数据库中匹配相似文本 ,作为p

    ](https://blog.51cto.com/morcake/9186343)

    大模型 学习 实现 搭建 AI

  • [

    Langchain入坑

    LangChain是一个用于开发由大型语言模型(LLM)支持的应用程序的框架。LangChain简化了LLM申请生命周期的每个阶段:开发:使用LangChain的开源构建块和组件构建您的应用程序。使用第三方集成和模板开始运行。生产化:使用LangSmith检查、监控和评估您的链,以便您可以充满信心地持续优化和部署。部署:使用LangServe将任何链变成 API 。jupyter具体来说,该框架由

    ](https://blog.51cto.com/bigdatagrocery/10385800)

    语言模型 ide 应用程序

  • [

    LangChain初探

    LangChain初探

    ](https://blog.51cto.com/u_15775105/6671035)

    sed List 数据库

  • [

    LangChain 学习

    一、LangChain定义什么是LangChainLangChain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,并集成额外的资源,例如 API 和数据库。LangChain六大主要领域管理和优化pro

    ](https://blog.51cto.com/u_6478076/14012868)

    LangChain

  • [

    langchain如何自动执行python代码 | langchain

    在当今的数据科学和人工智能领域,自动化代码生成与执行已成为提升效率与灵活性的重要手段。本文将详细介绍如何使用LangChain中的PythonREPL功能,实现大型语言模型(LLM)生成代码,并自动执行这些代码。通过这一流程,我们能够让大模型生成代码,然后通过代码执行来获取大语言模型通过文本生成本身不能很好完成的任务,特别是一些计算任务。

    ](https://blog.51cto.com/aiweker/13056491)

    语言模型 langchain AIGC

  • [

    LangChain简介

    LangChain简介

    ](https://blog.51cto.com/u_16520338/10826888)

    开发者 问答系统 数据处理

  • [

    解读LangChain

    随着OpenAI在2020年发布了开创性的GPT-3,我们见证了LLM的普及度稳步攀升,如今还在逐渐升温发酵。这些强大的人工智能模型为链式”不同组件的核心概念,LangChain简…

    ](https://blog.51cto.com/wirelesscom/7808118)

    langchain 数据 语言模型 应用程序

  • [

    langchain LogicFlow

    在这个博文中,我们将深入探讨如何使用“langchain LogicFlow”来强化我们的备份和恢复策略。通过一系列的工具与流程,我们可以有效地确保数据的安全性和可恢复性。本次内容包括备份策略、恢复流程、灾难场景、工具链集成、监控告警和最佳实践。准备好了吗?让我们开始吧!## 备份策略首先,我们需要明确一个高效的备份策略。备份策略的设计包括思维导图和存储架构,以便我们能清晰理解备份的整体框

    ](https://blog.51cto.com/u_16213449/14027588)

    数据 System 工具链

  • [

    langchain架构

    # 学习LangChain架构的第一步LangChain是一个用于构建智能应用程序的框架,特别是在需要自然语言处理(NLP)的场景。 本文将带领你逐步实现一个简单的LangChain架构,帮助你理解整个流程。## 流程概览以下是构建LangChain应用程序的基本步骤:| 步骤 | 描述 ||------|-------------

    ](https://blog.51cto.com/u_16175468/12035846)

    python ci API

  • [

    autodl 搭建langchain

      U盘对病毒的传播要借助autorun.inf文件的帮助,病毒首先把自身复制到u盘,然后创建一个autorun.inf,在你双击u盘时,会根据autorun.inf中的设置去运行u盘中的病毒,我们只要可以阻止autorun.inf文件的创建,那么U盘上就算有病毒也只能躺着睡大觉了,大家可能也想到这个,但是不管给autorun.inf设置了
    

    ](https://blog.51cto.com/u_14256/14018668)

    autodl 搭建langchain u盘 资源管理器 文件名

  • [

    langchain怎么搭建

    我们知道,如果我们安装的是应用服务软件,这个软件是给外网用户访问和使用的,那么应该使用源码包安装,因为源码包安装的软件经过了本机编译,性能更好。所以我们的 LAMP 环境搭建,在生产服务器上一般采用源码包进行安装,而不会使用 RPM 包进行安装,接下来我们要讲的也是采用源码包方式搭建 LAMP 环境。 LAMP 环境搭建是较为复杂的 Linux 实验,在进行真正的环境安装之前,

    ](https://blog.51cto.com/u_16213605/14017442)

    langchain怎么搭建 LAMP 服务器 php 源码包

  • [

    LangChain Agents demo搭建

    LAMP平台搭建 1 关于 lamp2 lamp平台的搭建2.1安装Red Hot Linux2.2 安装httpd2.3 安装mysql2.4 安装php2.5 配置apache3 测试 1 关于 lamp所谓lamp,其实就是由Linux+Apache+Mysql/MariaDB+Php/Perl/Python的一组动态网站或者服务器的开源软件,除Linux外其它各部件本身都是各自独立的程序

    ](https://blog.51cto.com/u_16099325/12395178)

    centos apache php

  • [

    langchain使用环境的搭建

    Lamp是Linux+Apache+Mysql+Perl/PHP/Python的简写,是一组常用来搭建动态网站或者服务器的开源软件。随着开源潮流的蓬勃发展,开放源代码的LAMP具有投资成本较低的优点,已经与J2EE和.Net商业软件形成三足鼎立之势。网站的流量上来说,70%以上的访问流量是LAMP来提供的,LAMP是最强大的网站解决方案。本文是笔者搭建Lamp环境的源码安装和yum安装的操作笔

    ](https://blog.51cto.com/u_16099181/14017584)

    langchain使用环境的搭建 mysql php apache

  • [

    langchain python langchain python doc

    简介LangChain是一个开源的应用开发框架。基于该开源框架,我们可以把大模型与各种工具结合从而实现各种功能,比如基本文档的问答,解析网页内容、查询表格数据等。目前支持Python和TypeScript两种编程语言。当前Python框架支持的模型和功能最全面。Modules按照官方wiki的描述,可以将Langchain的支持的功能划分为以下几个模块。Models该模块主要是集成了多个模型。主要

    ](https://blog.51cto.com/u_16099333/9960461)

    langchain python python langchain langchain应用 openai应用

  • [

    langchain function

    1、什么是函数式编程语言?  函数式编程语言(functional programming language)或称函数程序设计,又称泛函编程,是一种编程典范,它将计算机运算视为数学上的函数计算,并且避免使用程序状态以及易变对象。函数编程语言最重要的基础是λ演算(lambda calculus)。  函数式编程语言的特征:  (1)以“函数”为首,如同命令式语言中的“变量”,函数可以赋值给

    ](https://blog.51cto.com/u_16213580/13575818)

    langchain function 编程语言 函数式 函数式编程

  • [

    langchain页面

    Landing page也可以称为登陆页(也称着陆页),网站上任何一个接受流量的网页都可以称为landing apge。与普通的网页不同,landing page需要完成不同的使命,它需要把访问者引导到他们需要的网页,landing page并不是目标页,而只是引导访问者到目标页的一个中间页面。如果你租过房子,你可能找过房屋中介,landing page就扮演中介的角色。房屋中介需要了解租房者的需

    ](https://blog.51cto.com/u_16213698/14018293)

    langchain页面 访问者 搜索 搜索引擎

  • [

    langchain 异步

    AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML)AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。GET 还是 POST?与 POST 相比,GET 更简单也更快,并且在大部分情况下都能用。然而,在以下情况中,请使用 POST 请求:无法使用缓存文件(更新服务器上的文件或数据库)向服务器发送大量数据(PO

    ](https://blog.51cto.com/u_16099299/14020810)

    langchain 异步 xml 控件 json

  • [

    rust langchain

    Chrome可称宇宙最强浏览器,它的市场份额接近70%,如果把使用Blink内核,基于Chromium的,如,Opera,360,UC,QQ,百度,猎豹等一系列换壳浏览器加上,市场份额估计更高!纯净地Chrome不宜食用,需要佐料。正确的做法,是自己安装扩展(小名叫做插件),满足自己的特殊需求。全地球人都知道,国内无法打开Chrome插件商店。不过,国内有很多下载站,用户可以自行搜索,下载插件,然

    ](https://blog.51cto.com/u_16099209/14018755)

    rust langchain Chrome 安装插件 扩展程序

  • [

    langchain 案例

    [易学易懂系列|rustlang语言|零基础|快速入门|(27)|实战4:从零实现BTC区块链]项目实战实战4:从零实现BTC区块链我们今天来开发我们的BTC区块链系统。简单来说,从数据结构的角度上来说,区块链,就是区块组成的链。以下就是BTC区块链典型的结构:那最小单元就是区块:block。这个block包含两部分:区块头,区块体。我们先忽略Merkle树,先简化所有数据结构,只保留最基本的数据

    ](https://blog.51cto.com/u_16213717/14019615)

    langchain 案例 Blockchain 区块链 数据结构

  • [

    ESP32视频车 esp32远程视频小车

    先上视频 说明为了使初学者都可以直接看此章节实现WiFi视频遥控小车,内容是一步到位的.对于已经有经验的开发者可以

    ](https://blog.51cto.com/u_16213571/14029819)

    ESP32视频车 开发板 驱动模块 引脚

  • [

    基于机器学习的农作物生长情况检测

    农作物生长情况识别挑战赛1 赛题概要2 数据分析2.1 数据概览2.1.1 文件目录2.1.2 训练数据概览2.1.3 测试数据概览2.1.4 小结2.2 数据探索2.2.1 数据分布情况2.2.2 提交文件样例2.2.3 读取数据+预处理2.2.4 小结3 模型选择及训练(keras版)3.1 迁移学习特征抽取3.2 搭建适配的分类器并训练3.3 可视化训练过程3.4 预测测试集并生成提交文件

    ](https://blog.51cto.com/u_16099268/14030279)

    基于机器学习的农作物生长情况检测 python 深度学习 计算机视觉 数据

  • [

    避免样本偏差的方法

    参考文献1.如何解决机器学习中数据不平衡问题 2.Learning from imbalanced data 原文 3.对于正负样本不均衡的解决方法 4.2中论文的翻译总结一、 问题背分析1.背景 在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把这些算法直接应用于实际数据时,大多数情况下都无法取得理想的结果。因为实际数据往往分布得很不均匀,都会存在“长尾现象”,也就是

    ](https://blog.51cto.com/u_16213717/14030462)

    避免样本偏差的方法 正负样本不平衡问题 数据 类方法 数据集

  • [

    微服务 授权 访问量 微服务 登录授权

    对于很多java入门新手来说,security+Oauth2的授权方式可能太过繁杂,繁琐的配置会让人胆怯,特别是想自定义一些异常时,往往无从下手,我用了一年多的security+Oauth2,感觉是个好东西,当初学习时也话了不少时间,毕竟大厂都在用的东西,但是总感觉它不太适合新手。想来想去还是得自己写一个授权,一来公司新项目可以使用,再者给同行小白提前熟悉一下微服务架构下的安全框架的授权鉴权流程,

    ](https://blog.51cto.com/u_16213593/14031707)

    微服务 授权 访问量 java spring spring boot 后端

  • [

    ios对接内购 ios内购助手

    前言:关于iOS内购,参考两篇博文 iOS-iOS内购流程(手把手图文教程)iOS内购你看我就够了(埋坑篇)PS : 接下来,你可以下载demo将bundleID改为你自己的app,可以测试你的app内购商品购买,前提是:你需要APP开发者账号,我自己写了一个小的demo.GitHub : IAPKit 内购过程.p

    ](https://blog.51cto.com/u_16213707/14031820)

    ios对接内购 内购 iOS 服务器

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

<think>嗯,用户让我介绍一下如何使用LangChain搭建RAG系统。首先,我需要确保自己正确理解RAG的概念,以及LangChain在其中的作用。RAG是检索增强生成,结合了信息检索和生成模型,对吧?用户可能已经知道这个概念,但可能需要具体的实现步骤。 接下来,我应该回忆一下LangChain的组件。LangChain提供了处理语言模型的各种工具,比如文档加载、文本分割、向量存储、检索和生成链。用户可能需要分步指导,所以需要按流程解释每个部分。 第一步是文档加载。需要提到支持的格式,比如PDF、网页、文本文件,可能用WebBaseLoader或PyPDFLoader。然后,文本分割,因为大文档需要切块,这里要说明分块的大小和重叠,可能用RecursiveCharacterTextSplitter。 然后是向量存储和嵌入模型。需要解释将文本转换为向量,使用HuggingFaceEmbeddings或者OpenAI的嵌入模型。向量数据库可以选择FAISS或Chroma,这些是LangChain集成的工具。 接下来是检索器,这部分要说明如何设置相似度检索,top_k参数的作用。用户可能关心如何优化检索结果,所以可能需要提到调整参数或不同的检索策略。 生成部分需要结合检索结果和LLM,比如用ChatOpenAI或HuggingFace的模型。提示模板是关键,要确保用户的问题和检索到的上下文正确结合,给出结构化的提示示例。 组装链条的时候,RetrievalQA链可能是一个常用的方法,需要说明如何将各个组件串联起来。可能还要提到自定义提示或调整模型参数来优化回答质量。 最后,优化和扩展部分要考虑分块策略、模型选择、后处理等。用户可能想知道如何进一步提升系统性能,所以这里需要给出一些方向,比如实验不同的分块大小,或者添加后处理步骤过滤无关信息。 需要检查是否遵循了系统级指令,比如数学表达式是否正确使用$...$,独立公式用$$...$$。但在这个问题中可能涉及较少数学内容,不过如果有提到向量相似度计算,可能需要用LaTeX表达公式,比如余弦相似度公式$\cos(\theta)$。 另外,确保回答结构清晰,分步骤讲解,每个步骤有子步骤和注意事项。使用中文,避免专业术语过于晦涩,必要时解释概念。比如,解释嵌入模型的作用,将文本转化为数值向量,便于计算相似度。 可能还需要考虑用户的实际应用场景,比如搭建RAG是否需要编程经验,是否需要特定的API密钥,比如OpenAI的。可能需要提到安装依赖库,如langchain, faiss-cpu, chromadb等,但用户没有问安装步骤,可能不需要详细说明,但可以简要提及。 总之,回答需要分步骤,详细但不过于冗长,确保用户能理解每个环节的作用和实现方法,同时遵循格式要求,正确使用LaTeX,结构清晰,语言准确。</think>以下是用中文分步介绍如何使用LangChain搭建RAG系统的过程: ### 什么是RAG? 检索增强生成(Retrieval-Augmented Generation)结合了**信息检索**与**生成模型**,通过从外部知识库检索相关文档片段,为生成模型提供上下文,提升回答的准确性和可信度。 --- ### 搭建RAG的5个核心步骤 #### 1. 文档加载与处理 - **工具**:使用`DocumentLoader`(如`WebBaseLoader`加载网页,`PyPDFLoader`处理PDF) - **示例代码**: ```python from langchain.document_loaders import PyPDFLoader loader = PyPDFLoader("论文.pdf") documents = loader.load() ``` #### 2. 文本分割 - **原因**:长文本需切分为适合处理的片段 - **方法**:使用`RecursiveCharacterTextSplitter` ```python from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, # 每段500字符 chunk_overlap=50 # 片段间重叠50字符 ) splits = text_splitter.split_documents(documents) ``` #### 3. 向量化与存储 - **嵌入模型**:将文本转为向量,例如`HuggingFaceEmbeddings` - **向量数据库**:选择FAISS/Chroma存储 ```python from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS embeddings = HuggingFaceEmbeddings() vectorstore = FAISS.from_documents(splits, embeddings) ``` #### 4. 检索器配置 - **相似度检索**:设置返回最相关的k个结果 ```python retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) ``` #### 5. 生成模型集成 - **大语言模型选择**:例如`ChatOpenAI`或本地HuggingFace模型 - **组装RAG链**: ```python from langchain.chains import RetrievalQA from langchain.llms import OpenAI qa_chain = RetrievalQA.from_chain_type( llm=OpenAI(), chain_type="stuff", retriever=retriever ) ``` --- ### 优化策略 1. **分块优化**:调整`chunk_size`平衡信息完整性与检索效率 2. **混合检索**:结合关键词检索与向量检索(如`BM25`+`FAISS`) 3. **重排序**:使用`CohereRerank`对初步结果二次排序 4. **缓存机制**:对高频查询结果缓存提升响应速度 --- ### 典型应用场景 - 企业知识库问答 - 法律文件解析 - 学术论文摘要生成 - 客服自动化系统 --- 通过LangChain的模块化设计,开发者可以灵活替换各环节组件(如切换向量数据库或LLM),快速构建适应不同场景的RAG系统。实际应用中需注意数据隐私保护与模型幻觉问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值