- 博客(1597)
- 收藏
- 关注
原创 初学者怎么入门大语言模型(LLM)?
最近发现一个非常好的学习资料,可以一次性的掌握从理论到从头创建一个大模型,再到预训练,SFT(有监督微调),甚至到最后还有RAG以及Agent的搭建方式,非常的齐全。就是这个Happy-LLM,Github将近10000星了,上升势头非常快。由于下个学期可能需要讲一些类似的内容,所以自己过了一遍,教程一共有7章,我把它分成了三个部分:1-4理论部分, 5-6大模型创建和训练实践,7大模型扩展应用。所以总结下,要搞科研的,2,3,5必看,可以深入到算法层次;长见识的第四章看完足够了;
2025-07-12 17:15:09
493
1
原创 程序员醒醒吧,Anthropic自己的代码都被AI写了80%了,就你还有多少价值?
刚才看了一段访谈,特别有意思!这是来自全球前三的AI公司的工程团队的Leader Boris Cherny的。核心一句话就是:也就是Antrhopic自己的代码有80%以上是用AI完成的。我转录了所有的中间对话:可以看到完整的意思是:大概有80%甚至更高的代码是用Claude写的。通常的工作方式是Claude先写一波,如果不好了,再用人干。不过涉及到一些特别复杂的,可能需要人决策的事通常是不用Claude干的。因为解释给Claude再让它干远没有自己干的容易。
2025-07-12 17:11:01
265
原创 为什么很多程序员没有升级到架构师?
想象一下,你接到一个项目需求,老板拍着桌子跟你说:“咱们这个系统上线后,可能会有,得抗住大流量!”你点点头,内心却泛起了嘀咕:RTsuU"> 这百万用户是今天就有,还是几年后才有?是每天百万请求,还是瞬时百万并发?如果搞错了容量估算,不是系统直接挂掉,就是浪费预算烧钱。容量设计的本质,是。接下来,我们拆解容量设计背后的逻辑和实践方法。容量设计的核心是,确保在业务量增长时,系统还能稳定运行,不发生超载,也不浪费资源。这听起来很虚,但其实背后有非常具体的计算方法。决定了系统的容量需求。
2025-07-12 17:09:31
447
原创 如何基于LLM做推荐系统?
大家好,我是海文。大模型LLM在越来越多的领域开始崭露头角,比如我们在今年上半年曾在某电商平台落地过较为直观简单的LLMx搜索项目(我称之为LLM应用的第一阶段),同时拿到线上收益,LLM的潜力可见一斑。如果你也对LLM颠覆搜推广范式充满期待(虽然可能还要不少时间),梳理了大模型在推荐系统中的应用部分工作,一起来看看!既然是大模型在推荐系统中的应用,那么首先要梳理对比下传统推荐模型和LLM的优缺点,推荐到底在LLM的什么?从应用视角出发,将LLM应用拆解到传统推荐系统的各个模块。。
2025-07-12 17:07:50
476
原创 5 年后,GPT LLM 会替代底层程序员吗?
根本用不了五年,这几个月因为AI失业的人,已经出现了!这绝对不是危言耸听!对于编程来说,只要有那些会使用GPT和大模型的程序员永远在职场上保持一定的竞争力。目前的AI已经是可以做到自我编程,自我修复bug了,比如前些日子,Cognition 推出了全自动 AI 软件工程师 Devin,世界上第一位AI程序员由此诞生,号称能自主学习新技术,自己改Bug,从写代码到改代码 一站式服务,甚至它已经成功通过一家AI公司面试。
2025-07-12 16:58:24
687
原创 毕业后要不要当程序员,真相来了!
想知道未来十年哪些职业最吃香吗?今天就来和大家聊聊程序员这个备受关注的职业。很多人都听说程序员能远程工作,时间自由,听起来超诱人。但这背后,其实藏着不少你可能还不知道的真相,今天咱们就来一探究竟!
2025-07-11 17:21:31
811
原创 【AI时代】Java程序员大模型应用开发详细教程(非常详细),大模型入门到精通,收藏这一篇就够了!
大模型,全称「大语言模型」,英文「Large Language Model」,缩写「LLM是一种基于机器学习和自然语言处理技术的模型,它通过对大量的文本数据进行训练,来学习服务人类语言理解和生成的能力。eg:一个人从小学到高中毕业这整个的学习阶段 — 大模型的训练对于大家来说比较熟悉的大模型产品有两个DeepSeek | 深度求索国家对话产品大模型访问链接美国GPT-4、Phi-3(部分功能)xAI GrokGrok-1.5中国百度文心一言文心大模型4.0文心一言讯飞星火。
2025-07-11 16:59:14
355
原创 LLM带你转型大语言模型算法工程师
随着大型语言模型(LLM, Large Language Models)在自然语言处理(NLP)领域的不断进步,越来越多的开发者对这一领域产生了浓厚的兴趣。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?学习模型量化(INT8/FP16)与剪枝技术。
2025-07-11 16:53:33
315
原创 大模型时代,程序员的未来角色该如何转型?
具体来说,在大模型技术下加持的诸多 AI 工具已经展现出了强劲的生产力,如果程序员还抱守着既有的知识体系不改变,那早晚会被时代淘汰。但问题是程序员应当如何对自身定位,并向何方转型呢?在不少回答中都认同一点,就是。对于如何转型的观点,总结起来有以下这些:● **成为超级个体:**通过使用AI工具突破单一技术限制,快速完成软件开发中的各项工作,强化自己的职业技能。● **成为架构师或设计师:**烦琐重复的工作应当交给AI,程序员要将思维提升到系统架构与设计上,构建稳定、高可用的服务和应用。
2025-07-11 16:52:03
676
原创 程序员转行AI大模型教程(非常详细),大模型入门到精通,收藏这一篇就够了!
在人工智能(AI)迅速发展的背景下,从传统的编程领域如Java程序员转向大模型开发是一个既充满挑战也充满机遇的过程。对于 Java 程序员来说,这也是一个实现职业转型、提升薪资待遇的绝佳机遇。简单来说,大模型就是具有大量参数和强大计算能力的人工智能模型,可以处理各种复杂的任务,如自然语言处理、图像识别等。想象一下,大模型就像是一个超级聪明的大脑,能够理解和处理各种信息。第一步:学习基础知识。了解机器学习、深度学习的基本概念和原理,掌握常见的算法和模型架构。可以通过在线课程、书籍等资源进行系统学习。
2025-07-11 16:50:18
566
原创 程序员如何避免焦虑和过劳
程序员是一个压力较大的职业,长时间面对复杂的代码、急需交付的项目和不确定的需求变化,容易导致焦虑和过劳。这不仅会影响工作质量,还可能对个人的身体和心理健康产生长期影响。以下是一些缓解焦虑和过劳的有效方法:2.1 合理安排工作与休息合理的工作安排是减少焦虑和过劳的基础。长时间的连续工作不仅会导致疲劳,还可能影响思维的敏捷性和代码的质量。使用番茄工作法是一种有效的时间管理方法。该方法将工作分为25分钟的工作周期,每完成一个周期后休息5分钟,每四个周期后休息更长时间(15-30分钟)。
2025-07-10 18:31:41
714
原创 太深刻了!程序员焦虑的真相!
在互联网,AI浪潮的推动下,程序员已然成为新时代的民工,他们既享受着高薪的待遇,。作为程序员你有职业焦虑吗?今天我和大家就是中国人才太多了,社会竞争激烈,社会整体上的平均富裕水平也不足够,所以,直接导致了有人单位粗犷 35+年龄歧视、学历歧视等一刀切筛选求职者等现象。再者,国内IT行业还有个通病,加剧了青春饭的现象——也就是 过于专注于应用层面的堆砌,看着一个个应用开发需求,不断地996,但实际技术积累偏少,这也带来程序员青春饭的直接原因。
2025-07-10 18:30:26
927
原创 趣说IT职场4:程序员35岁焦虑真相:你焦虑的不是年龄,是“盲干”
程序员35岁要转行”“35岁没人要”“IT人35岁是职场高危人群”……你以为这是新闻?不,这是都市恐怖故事合集 Vol.35。但我想说句得罪人的实话:👉 真正让你焦虑的,不是35岁,而是你在“低头狂干活、抬头全迷路”的职业盲区里,没走出来。程序员的35岁,不是终点,是中场哨声。焦虑是提醒你:别再“闷头做事,闭眼撞墙”。要开始抬头看方向、低头修技能树、学会造路而不只是赶路。作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?
2025-07-10 18:29:44
882
原创 大模型零基础教程(非常详细),大模型入门到精通,收藏这一篇就够了!
大模型,是指在人工智能领域,特别实在自然语言处理和机器学习中,拥有大量参数的深度学习模型。这些模型通过在大规模数据集上进行训练,能够学到丰富的数据表示和模式,从而在各种任务上表现出色,如文本生成,语言理解,图像识别等。大模型是具有大量参数和复杂结构的模型,这些模型通常具数十亿甚至数万亿个参数,能够处理大规模的数据和复杂的任务。通常使用深度学习技术,如深度神经网络,可以从数据中学习并提取特征来执行各种任务。
2025-07-10 18:28:02
818
原创 AI 工程师年薪,量子计算专家这些职业正在重塑财富分配格局
从 AI 工程师到量子计算专家,从网络安全到元宇宙,这些职业不仅代表着技术的前沿,更是财富分配的新入口。正如某 AI 算法工程师通过优化推荐系统年薪破百万,某量子硬件工程师因技术突破获千万投资,未来的高薪职业需要。
2025-07-09 20:33:53
689
原创 学人工智能就业能月入多少?真实薪资大揭秘!
如果你对技术感兴趣,愿意花时间学习,AI绝对是一个高薪且有前景的方向。刚入行可能不会立刻月入3万,但只要技术扎实,2-3年后薪资翻倍很常见。技术感兴趣,愿意花时间学习,AI绝对是一个高薪且有前景的方向。刚入行可能不会立刻月入3万,但只要技术扎实,2-3年后薪资翻倍很常见。关键是要选对学习路径,别被那些“速成高薪”的广告忽悠。建议先学Python和机器学习基础,再找实战项目练手,或者报个靠谱的培训班系统学习。
2025-07-09 20:32:47
717
原创 【Spring AI 0基础教程】1、基础篇 | 环境搭建
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?浏览器访问:http://127.0.0.1:8080/ai/generate。掌握评估指标(BLEU/ROUGE/人工评测)
2025-07-09 20:11:14
661
原创 什么是 AI 代理 (AI Agent)?
我几乎每天都被问到这个问题。在 LangChain,我们开发工具,帮助开发者构建大型语言模型 (LLM) 应用。这些应用就像会思考的引擎,能与外部信息和计算资源互动。人们常把这类系统叫做 “代理”。对于 AI 代理 (AI Agent),每个人的理解都有些不同。我的理解可能更技术化:AI 代理是一个系统,它用 LLM 来决定应用程序的控制流程 (Control Flow)。即使这样,我也觉得我的定义不完全到位。人们常觉得代理应该是高级的、自主的、像人一样的。
2025-07-09 20:09:21
993
原创 n8n、Dify、Coze 深度测评:从 0 到 1 选对 AI 自动化平台,避开 99% 的坑(非常详细)从零基础到精通,收藏这篇就够了!
起源与理念:2023 年由前腾讯系创业者张路宇创立,首个提出 “LLMOps” 概念,目标是降低大模型应用开发门槛。定位 “企业级 AI 应用开发平台”,开源且支持私有化部署,主打 “大模型 + 工作流” 深度整合,让复杂 AI 应用开发像搭积木一样简单。技术架构大模型优先设计:内置 OpenAI、DeepSeek、Llama 等主流模型接口,支持 RAG(检索增强生成)框架,一键接入企业文档生成智能知识库。低代码工作流。
2025-07-08 18:44:59
1297
原创 AI大模型算法工程师转行指南:揭秘行业趋势与职业发展前景(非常详细)从零基础到精通,收藏这篇就够了!
从ChatGPT到新近的GPT-4,GPT模型的发展表明,AI正在向着“类⼈化”⽅向迅速发展。GPT-4具备深度阅读和识图能⼒,能够出⾊地通过专业考试并完成复杂指令,向⼈类引以为傲的“创造⼒”发起挑战。现有的就业结构即将发⽣重⼤变化,社会⽣产⼒的快速提升将催⽣新的⾏业和岗位机会。如何与⼈⼯智能协同⼯作,利⽤AI辅助办公已经成为各⾏从业者的必修课。脉脉创始⼈兼CEO林凡认为,从“⼈⼯智障”向“⼈⼯智能”的进化节点,。
2025-07-08 18:43:51
1130
原创 AI 应用开发工程师的 AIGC 秘籍,小白也可以开发一个使页面变成“猛男粉”的chrome插件
在 AI 技术日新月异的今天,程序员的职业发展也迎来了前所未有的机遇与挑战。传统的编程模式正在被颠覆,一种以 AI 智能生产力为核心 的全新角色—— AI 应用开发工程师 正在崛起。如果你厌倦了传统程序员的日复一日,渴望拥抱变革,那么 AI 应用开发工程师将是你职业生涯的完美转型。本文将带你了解 AI 应用开发工程师的核心技能,以及如何利用 AIGC 技术提升开发效率,打造 AI 驱动的自动化应用。
2025-07-07 18:27:54
944
原创 前端自动化测试 —— Jest 测试框架应用
在软件测试中,自动化测试指的是使用独立于待测软件的其他软件来自动执行测试、比较实际结果与预期并生成测试报告这一过程。在测试流程已经确定后,测试自动化可以自动执行的一些重复但必要的测试工作。也可以完成手动测试几乎不可能完成的测试。对于持续交付和持续集成的开发方式而言,测试自动化是至关重要的。 ——来自 WiKi 百科随着前端项目的发展,其规模和功能日益增加。为了提高项目的稳定性和可靠性,除了需要测试工程师外,前端自动化测试也成为了不可或缺的一环。采用前端自动化测试可以有效地提高代码质量,降低出错的概率,从而使
2025-07-07 18:27:17
555
原创 用了 Trae 后,感觉离京东外卖不远了
入手 Trae 开发已经有一段时间了,因为之前开发过一个vscode 插件,有点好奇如果让 Trae 来实现同样的功能会怎样。结果令人震惊 —— 不到10分钟就完成了开发!这让我突然间对未来迷茫起来了。甚至觉得"送外卖的日子"似乎也不远了(说起来也巧了,今天碰巧就注册了京东众包😂)我们先来看一下插件的效果这个插件是智能代码命名工具,很多开发者在给代码命名时常常感到困扰,尤其是在英文水平有限的情况下,频繁地依赖翻译软件来寻找合适的命名。
2025-07-07 18:26:44
921
原创 字节的野心:Trae新增MCP功能,深度测评
自定义规则是Trae的另一大亮点。系统支持两级规则:个人规则(user_rules.md)和项目规则(.trae/rules/project_rules.md)。个人规则适用于所有项目,我配置了一些个人偏好,如"使用TypeScript而非JavaScript"、"遵循函数式编程范式"等。项目规则则针对特定项目,我在公司项目中设置了"遵循公司编码规范"、"使用特定版本依赖"等要求。实测下来,Trae能很好地遵循这些规则。更让我惊讶的是,它不仅遵循明确的指令,还能理解规则背后的意图。
2025-07-07 18:25:58
910
原创 Vue3 + Three.js 首款 3D 数字孪生编辑器!正式开源!
Three-Editor 就是一个专门搞 3D 场景构建的低代码编辑器内核,目的就是把 3D 应用开发的门槛给降下来。它搞了个可视化编辑界面,开发者和设计师用起来可方便了,能轻轻松松地创建、编辑和优化 3D 场景,那些复杂的 3D 编程细节都不用管,搞数字孪生项目效率一下就上去了。说实话,Vue3 + Three.js 这首款 3D 数字孪生编辑器一开源,3D 开发领域直接被改变了。它让开发变得更简单、更高效,还激发了大家更多的创意。首款 3D 数字孪生编辑器一开源,3D 开发领域直接被改变了。
2025-07-04 20:01:15
1078
原创 ElementPlusX + RuoyiAI:Vue3 首个 AI 开发模板开源了!
ruoyi-element-ai 是由 ElementPlusX 和 RuoyiAI 联合打造的企业级 AI 应用全栈开发模板。它基于 Vue3.5 和 Element-plus-x 组件库,采用 Pinia 进行状态管理,Hook-fetch 处理 API 请求,并结合 TypeScript 和 ESLint 等工具,提供了高效、规范的开发体验。后端则使用 RuoyiAI 项目进行接口对接,支持登录、注册、会话管理、消息发送和模型切换等功能,旨在为开发者提供一个完整、高效的 AI 项目解决方案。
2025-07-04 20:00:14
959
原创 七款 MCP 工具,彻底改变我用 AI 写代码的方式
这些 MCP 工具,解决了使用 AI 编程时最头疼的问题:•上下文错误:Context 7 MCP、Exa MCP 保证信息新鲜又真实。•规划混乱:Claude Taskmaster 自动拆分任务。•资料缺失:Browser MCP 秒搜文档。•界面太丑:21st Dev Magic 给你“颜值自由”。•重复造轮子:Knowledge Graph Memory 让你“写一次用十次”。挑 1~2 个工具用上,你就像给自己配了个专业 AI 编程助理。保证信息新鲜又真实。•规划混乱。
2025-07-03 18:43:47
1062
原创 AI人才缺口高达400万!阿里云全球合作高校扩至110所
3月21日,南都记者了解获悉,阿里云官宣与新加坡国立大学、泰国数字经济促进局等10所知名高校及政府机构达成合作,推出AI及云计算培训课程,覆盖泰国、新加坡、中国香港等7个亚洲主要国家及地区。此前,阿里已在国内与多个科研机构、多所高校合作部署阿里通义千问QwQ-32B,助力降低AI应用门槛、提升科研效率。
2025-07-03 18:41:38
738
原创 大模型 embedding 大模型embedding效果
利用手工构造的交叉组合特征来使线性模型具有“记忆性”,使模型记住共现频率较高的特征组合,且可解释性强。这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力。其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化。Wide&Deep模型的提出不仅综合了“记忆能力”和“泛化能力”, 而且开启了不同网络结构融合的新思路。所以后面就有各式各样的模型改进Wide部分或者Deep部分,本文章为转载内容,我们尊重原作者对文章享有的著作权。
2025-07-02 20:57:23
1067
原创 AI科研绘图(一):零基础入门和基本图形绘制
Adobe illustrator是一种应用于出版、多媒体和在线图像的工业标准矢量插画的软件,是一款非常好的图片处理工具,简称AI。作为一只实验狗,总要想办法展示自己的数据结果,漂亮的配图则会给你的文章锦上添花。AI都是可以处理科研用图的神器,不管是示意图模式图、信号转导通路图、通过R或者数据处理软件得到的生图,还是需要后期排版的图表,用AI都可以分分钟搞定。而且对于科研绘图而言,AI中复杂的功能也用不到,掌握最基础的工具和方法就足够了,所以希望大家通过这一系列教程,学会用AI绘制和处理各种论文绘图。
2025-07-02 20:55:50
943
原创 AI大模型 docker部署 aida模型图
经过上次对基本元素和工具的学习(),我们基本上掌握了最常用和基础的工具的用法。在学术论文中常常需要添加一些简单的插图作为示意图,例如植物、细胞、微生物等,帮助审稿人和读者更直观的了解文章的内容。下图是选自Nature Reviews Microbiology这篇综述中的一张插图,本节我们就以这张示意图为例,一起学习用AI来画类似这样的示意图。
2025-07-02 20:55:15
1137
原创 如何修改蓝光原盘的mpls文件 蓝光原盘怎么转mkv
MeGUI这玩意就不多做介绍了,Google之一大堆,自己可以瞅瞅先。这玩意是用来压片的首选工具,从DVDRiP时代到现在BDRiP的高清年 底,当年虽然也玩过一阵子DVD到DVDRiP,也算用过这个MeGUI,但时隔多年,这东东已经是日新月异了。前段时间不是特别忙,于是想找点事情做 做,就打算自己压点片子玩玩,纯属个人娱乐,不牵扯任何专业性质,毕竟不是知名压片组的那种要求,对各项参数都有很严格的要求。所以,本教程,纯粹针对新 手上路自己玩玩,如果需要更深层次的进阶,还得自己摸索或者加入压片组去慢慢学习。
2025-07-02 20:54:39
665
原创 nosql数据库原理期末题库 nosql数据库技术实战pdf
MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统。在高负载的情况下,添加更多的节点,可以保证服务器性能。MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成。MongoDB 文档类似于 JSON 对象。字段值可以包含其他文档,数组及文档数组。
2025-07-02 20:53:39
874
原创 怎么在本地部署大模型?分享这款工具!
怎么在本地部署大模型?在数据安全与隐私保护成为核心需求的时代,本地化部署大模型已成为企业与个人用户的刚需。DS本地部署大师凭借零代码门槛、全参数模型支持、离线在线双模式三大核心优势,成为DeepSeek、豆包等主流大模型落地的首选工具。DeepSeek作为一款支持本地运行的AI工具,其硬件配置与部署流程直接影响用户体验。本文将详细解析其功能特性与操作流程,助力大家完成本地化部署。一、软件核心优势:安全、灵活、易用。
2025-07-02 20:52:46
819
原创 HarmonyOS Next数据处理与模型训练优化
数据清洗实现在HarmonyOS Next中,可以使用编程语言提供的基本数据处理功能和相关库来实现数据清洗。例如,对于一个存储在数组或列表中的数据集,可以通过遍历数据,使用条件判断语句来识别和去除异常值。假设我们有一个传感器采集的温度数据集,其中部分数据由于传感器故障出现了明显超出正常范围(如 - 50℃到50℃)的异常值。以下是一个简单的数据清洗代码示例(使用TypeScript语言风格,假设数据存储在一个名为的数组中):i++) {在这个示例中,通过遍历。
2025-07-01 20:56:01
859
原创 HarmonyOS Next深度学习模型转换指南
支持的深度学习框架HarmonyOS Next支持多种主流的深度学习框架,其中包括TensorFlow和PyTorch等。这些框架在学术界和工业界广泛应用,拥有丰富的模型库和强大的功能。例如,TensorFlow以其高效的计算图构建和分布式训练能力备受青睐,而PyTorch则以其动态计算图和简洁的代码风格受到开发者的喜爱。通过支持这些框架,HarmonyOS Next为开发者提供了更多的选择和灵活性。转换工具概述针对不同的框架,HarmonyOS Next提供了相应的模型转换工具。
2025-07-01 20:55:06
1027
原创 35岁程序员转行大模型合适吗?前景如何?如何成功转行大模型领域?
在技术领域,年龄往往不是决定职业发展的关键因素。然而,对于35岁的程序员来说,转行大模型可能需要一些额外的思考和规划。
2025-07-01 20:53:57
1705
原创 AI自动化神器n8n,保姆级教程来了!
有了每小时的 GitHub Trending 项目列表数据,我们就可以开始进行项目信息总结了。由于我们每小时抓取一次 GitHub Trending 项目列表,因此我们需要一些策略来挑选我们最终用 AI 进行总结项目对于已经总结以及推送过的项目,需要避免重复推送项目的信息需要从 GitHub 获取,特别是项目的 README 信息从之前存储的 Supabase 中获取项目列表剔除其中已经推送的项目通过一定策略挑选需要推送的项目获取项目信息,主要为 README。
2025-06-30 16:33:32
1199
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人