怎么在本地部署大模型?分享这款工具!

怎么在本地部署大模型?在数据安全与隐私保护成为核心需求的时代,本地化部署大模型已成为企业与个人用户的刚需。DS本地部署大师凭借零代码门槛、全参数模型支持、离线在线双模式三大核心优势,成为DeepSeek、豆包等主流大模型落地的首选工具。DeepSeek作为一款支持本地运行的AI工具,其硬件配置与部署流程直接影响用户体验。本文将详细解析其功能特性与操作流程,助力大家完成本地化部署。

img

一、软件核心优势:安全、灵活、易用

DS本地部署大师是一款功能强大的AI模型部署工具,内置DeepSeek-R1全系列(1.5B/7B/14B/32B/70B/671B)、豆包(创意写作)、文心一言(中文理解)等多种主流模型,覆盖从轻量级设备到企业级服务器的全场景需求。软件操作便捷,一键即可完成模型配置与本地安装,无需编程基础。

img

二、操作步骤:从下载到使用的完整流程

步骤1:一键安装DS本地部署大师

img

②自定义安装路径
双击安装包,选择非系统盘路径(如D:\DeepSeekModels),避免占用C盘空间。

③完成基础配置
安装完成后,启动软件。点击“立即启动”,进入DeepSeek操作界面。

img

步骤2:智能匹配模型版本

img

步骤3:启动与验证

使用Deepseek模型进行智能问答,只需要在文本框中输入问题,它很快就能生成对应的回答,而且生成的速度很快,没有卡顿、无法生成的情况出现,很适合习惯用deepseek但又不喜欢卡顿和速度较慢的用户使用。

img

三、进阶功能:满足多样化场景需求

①模型无缝切换
点击界面下方模型选择栏,可在DeepSeek、豆包、文心一言间快速切换。例如,市场部撰写广告文案时,先用DeepSeek生成逻辑框架,再切换至豆包润色语言风格。

img

②操作简单容易

软件中生成的内容都可以点击【复制】按钮一键复制到其他软件,如果对生成的信息不满意,还可以让它重新生成。

可以点击【复制】按钮一键复制到其他软件,如果对生成的信息不满意,还可以让它重新生成。

无论是个人用户探索AI创作,还是企业客户构建数据安全防线,DS本地部署大师均能以一键部署、全场景覆盖、军工级安全的特点,成为大模型本地化的最优解。立即下载体验,开启您的AI本地化新时代。需要的小伙伴们快来试试吧!

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

<think>好的,我现在需要处理用户关于本地部署大语言模型的查询。用户明确想了解定义、架构及实现方式。首先,我得回顾之前提供的引用内容,确保信息准确且符合用户需求。 首先,用户提到的引用[1]中,本地部署大语言模型的意义包括数据安全、自主性、效率优化和成本降低。这部分可以作为定义的基础,说明本地部署的核心概念。接下来,引用[2]提到了LangChain和Streamlit的应用,以及具体的实现步骤,比如设置虚拟环境、整合LLM等。这些内容对实现方式部分有帮助。引用[3]则介绍了ChatGLM模型的架构,特别是基于GLM的结构和参数规模,这对架构部分很重要。 接下来,我需要组织回答的结构。用户的问题分为定义、架构和实现方式三个部分。定义部分需要明确本地部署是什么,强调其与云端部署的区别,如数据本地处理、自主控制等。架构方面,需要涵盖模型本身的结构(如Transformer或GLM)、配套工具链(如LangChain)以及应用层框架(如Streamlit)。实现方式则需要分步骤说明,比如环境准备、模型选择、框架整合、部署优化等。 需要注意的是,用户可能对技术细节不太熟悉,所以语言要尽量简明,避免过于专业化的术语,必要时举例说明,比如提到ChatGLM3-6B作为例子。同时,确保引用来源正确,如引用[1]、[2]、[3]在适当的位置标注。 在生成相关问题部分,要围绕用户的问题扩展,比如技术挑战、安全性、开源框架比较等,这样有助于用户深入探索。 最后,检查是否符合之前的系统级指令:数学公式是否正确使用中美元符号,段落结构清晰,中文回答,引用标识正确。特别是确保没有使用任何Markdown格式,保持纯文本。</think>### 本地部署大语言模型的定义、架构及实现方式 #### 一、定义 **本地部署大语言模型**指将大语言模型(Large Language Model, LLM)直接部署本地服务器或私有化环境中运行,而非依赖云端服务。其核心特点包括: 1. **数据本地化**:所有数据处理和推理均在本地完成,避免数据外传[^1]。 2. **自主控制**:用户可自定义模型参数、优化策略及资源分配[^1]。 3. **隐私与安全**:减少因数据传输导致的隐私泄露风险[^1]。 #### 二、架构 本地部署大语言模型的典型架构分为三层: 1. **模型层**: - 核心模型通常基于Transformer或GLM(General Language Model)架构,如ChatGLM3-6B(62亿参数,支持中英双语)[^3]。 - 模型文件包含预训练权重、分词器(Tokenizer)及配置文件。 2. **工具链层**: - **推理框架**:如Hugging Face的Transformers库,提供模型加载和推理接口。 - **应用框架**:如LangChain,用于整合模型与业务逻辑(如文件检索、Prompt工程)[^2]。 3. **应用层**: - 通过Streamlit等工具构建交互界面,实现问答、文本生成等功能[^2]。 #### 三、实现方式 以下是本地部署的关键步骤: 1. **环境准备**: - 创建虚拟环境(如Python的`venv`),安装CUDA驱动(GPU支持)。 - 依赖库示例: ```bash pip install torch transformers langchain streamlit ``` 2. **模型选择与加载**: - 下载开源模型(如ChatGLM3-6B[^3])或微调现有模型。 - 代码示例(使用Transformers库): ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("THUDM/chatglm3-6b") tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b") ``` 3. **框架整合**: - 使用LangChain定制Prompt模板和任务链: ```python from langchain import PromptTemplate, LLMChain template = "基于以下内容回答问题:{context}\n问题:{question}" prompt = PromptTemplate(template=template, input_variables=["context", "question"]) chain = LLMChain(llm=local_llm, prompt=prompt) ``` 4. **部署与优化**: - 量化压缩:通过8-bit或4-bit量化减少显存占用。 - 服务化:使用FastAPI封装模型为REST API,或通过Streamlit构建Web应用[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值