在知乎上有一个关于程序员职业生涯的热门问答:在 AI 快速发展的浪潮下,程序员的未来角色该如何转型?
具体来说,在大模型技术下加持的诸多 AI 工具已经展现出了强劲的生产力,如果程序员还抱守着既有的知识体系不改变,那早晚会被时代淘汰。但问题是程序员应当如何对自身定位,并向何方转型呢?
在不少回答中都认同一点,就是程序员角色一定还会存在,并发挥更加重要的作用。对于如何转型的观点,总结起来有以下这些:
● **成为超级个体:**通过使用AI工具突破单一技术限制,快速完成软件开发中的各项工作,强化自己的职业技能。
● **成为架构师或设计师:**烦琐重复的工作应当交给AI,程序员要将思维提升到系统架构与设计上,构建稳定、高可用的服务和应用。
● **跨领域创新:**程序员要利用AI知识丰富的特点,跨领域地寻找创新机会,从而做出具有独特价值的应用。
可以说,以上转型方向都是值得程序员努力尝试的,接下来要面对的实际问题,就是如何去学习、掌握并应用AI 技术。
用AI武装自己
程序员要用 AI 将自己武装起来,可以分为三个步骤,分别是学习理论知识、学习工具使用、综合运用。这三步在学习过程中可以循环迭代,即学习了一个知识点就可以尝试去使用工具,解决一个实际问题。
第一步:学习理论知识
要学习的理论包括机器学习、深度学习、自然语言处理、计算机视觉等核心领域的基本概念、算法原理和数学模型。
在机器学习领域,要理解监督学习、无监督学习和强化学习的区别与联系,掌握线性回归、逻辑回归、决策树、支持向量机等经典算法的推导过程和适用场景。
深度学习是机器学习的重要分支,也是大语言模型的基石,所以要重点熟悉神经网络的基本结构和工作原理,了解卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、Transfromer 等模型的架构特点和优势。
第二步:学习工具使用
对于 AI 辅助编程,可用工具众多,包括 GitHub Copilot、CodeWhisperer、MarsCode、CodeGeeX、Cursor 等,这是可以给程序员的生产效率带来直接帮助的。
要开发 AI 应用,使用 Python 是最佳选择,因为Python语言简单易上手,拥有众多成熟的第三方库,提供了便捷的开发支持。PyTorch 和 TensonFlow 是深度学习领域的两大开源框架。
**● PyTorch:**由 Facebook 的 AI 研究团队开发,以其动态计算图和易用性著称,支持快速原型设计和灵活的模型构建,广泛应用于研究和开发。
**● TensorFlow:**由 Google 开发,具有灵活的架构,支持多种深度学习模型,如神经网络、卷积神经网络、循环神经网络等,适用于研究和生产环境。
AI 应用也离不开数据处理,程序员还要熟练使用 NumPy、Pandas、Matplotlib 等数据处理和可视化库,快速完成数据清洗、特征工程等任务,为模型训练做好准备。
第三步:综合运用
程序员可以从简单的项目开始,逐步过渡到复杂的项目。例如,开发一个基于深度学习的图像识别系统,再到基于 AI Agent 技术构建一个智能问答机器人。
在项目实践中,程序员会遇到各种各样的问题和挑战,包括数据质量不佳、模型过拟合或欠拟合、训练时间过长等。通过解决这些问题,程序员可以加深对 AI 理论和算法的理解,提高解决实际问题的能力。
程序员在 AI 时代想要转型可谓道路宽广,但要学的知识看起来好像千头万绪,从哪里开始?
我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周快速成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】