从零开始构建大模型:GitHub超44K Star的大模型教程

2025 年以来,AI 大模型领域持续火热,从 DeepSeek、GPT-4、Claude 3 到 Gemini 2.0 等等,各家模型参数动辄千亿级,能力日新月异。

  • 在应用层,RAG、Agent、ReAct、ToolFormer、MCP、Agent2Agent 等框架百花齐放;
  • 在部署层,轻量化、蒸馏与 LoRA 微调成为新趋势;而在研究社区,“推理能力”、“长期记忆”、“多模态融合”成为讨论焦点。

然而,尽管我们每天都在讨论提示工程、RAG pipeline、embedding vector、MCP、Agent2Agent 和工具调用,**真正从头理解并掌握大模型(**LLM)的人却凤毛麟角。我们知道 GPT 很强,但却不知道它为什么强;我们能用 LangChain,但无法说清 Transformer 的每一层结构。

如果你也有这样的技术焦虑——即想要真正理解一个 LLM 的构建细节,并掌握其底层实现方式,那么接下来的这本书,值得你从头到尾读上三遍。

一本书,带你从零实现大模型

《Build a Large Language Model (From Scratch)》 是机器学习领域权威作者 Sebastian Raschka 的最新力作。

这老哥在 X 上有超过 30 万粉丝!他曾出版过畅销书《Python 机器学习》,拥有极强的“代码+理论”教学功底。这一次,他带领读者用 PyTorch 从零搭建一个完整的 LLM 系统。

图片

这本书不仅讲解了 Transformer 的核心机制,更配备了高质量的开源代码仓库,让你真正“看得懂 + 跑得通 + 改得动”。这个 GitHub 仓库目前斩获 44.1K 的 Star!

https://github.com/rasbt/LLMs-from-scratch

图片

内容结构:七大模块覆盖全流程

书籍围绕 LLM 的完整生命周期设计,共分为三大阶段

图片

七个章节

1. 设计与初始化

模型架构、tokenizer、embedding、位置编码

2. 预处理与数据流水线

文本分块(chunking)、清洗与批处理

3. Transformer 模型构建

Attention、Multi-head、LayerNorm 等详解

4. 文本生成策略

从 Greedy 到 Top-k/Top-p,一网打尽

5. 大规模预训练

训练目标、学习率调度、梯度累积等工程细节

6. 下游微调实践

SFT、RLHF 的微调流程与训练技巧

7. 安全与指令对齐

Instruction Tuning 与有害输出的控制手段

每个章节都配有详实代码、图解原理与实验输出,便于快速上手与复现。

实践特色:不仅懂原理,更能动手训练

与市面上“纸上谈兵”的 LLM 入门书不同,本书有以下几个亮点:

  • 代码实战导向:你将在自己电脑上构建出一个 GPT-2 等价模型,并运行文本生成与下游任务。
  • 工程细节完整:包括混合精度、学习率调度、显存优化与分布式训练,完整覆盖训练全过程。
  • 官方仓库维护活跃:核心模块拆分合理,便于复用、扩展或改写。
  • 社区生态良好:已有多语言实现版本(如 Rust、Candle、JAX),社区贡献活跃。

为什么要看这本书?

✅ 真正理解 Transformer

而不是“知道有 Attention 就行”。通过亲手实现每一个子模块(Self-Attention、前馈网络、残差连接、LayerNorm),你将从底层建立起对大模型架构的认知。

✅ 从零构建自己的 LLM

不依赖 huggingface,也不只是调 API,而是动手完成数据准备、模型构建、训练、生成、微调,完成属于自己的“小 GPT”。

✅ 高性价比学习

不需要上千张 GPU,只需一张 8GB 显存显卡,你就能跑通训练全过程。

✅ 掌握底层能力,提升竞争力

在 LLM 技术飞速演进的今天,掌握“造模型”的能力,比“用模型”的 prompt skill 更有长远价值。真正能调参数、改结构、设计新模型的人,才是 AI 产业链顶端的人才。

推荐对象

  • 想深入掌握 LLM 工作机制的开发者/研究者
  • 有 Python 和 PyTorch 基础,希望从实战入门大模型的工程师
  • 教育者/讲师,寻找可教学、可落地的 LLM 架构课程
  • 创业者,想打造自研模型或轻量模型方案者

结语:掌握底层,才是与 AI 共舞的真正姿势

MCP 和 Agent2Agent 很火,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。

,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。

一书在手,从此心中无惧模型黑箱。

那么,如何快速系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~

在这里插入图片描述

👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。

在这里插入图片描述

9周快速成为大模型工程师

第1周:基础入门
  • 了解大模型基本概念与发展历程

  • 学习Python编程基础与PyTorch/TensorFlow框架

  • 掌握Transformer架构核心原理

  • 在这里插入图片描述

第2周:数据处理与训练
  • 学习数据清洗、标注与增强技术

  • 掌握分布式训练与混合精度训练方法

  • 实践小规模模型微调(如BERT/GPT-2)

第3周:模型架构深入
  • 分析LLaMA、GPT等主流大模型结构

  • 学习注意力机制优化技巧(如Flash Attention)

  • 理解模型并行与流水线并行技术

第4周:预训练与微调
  • 掌握全参数预训练与LoRA/QLoRA等高效微调方法

  • 学习Prompt Engineering与指令微调

  • 实践领域适配(如医疗/金融场景)

第5周:推理优化
  • 学习模型量化(INT8/FP16)与剪枝技术

  • 掌握vLLM/TensorRT等推理加速工具

  • 部署模型到生产环境(FastAPI/Docker)

第6周:应用开发 - 构建RAG(检索增强生成)系统
  • 开发Agent类应用(如AutoGPT)

  • 实践多模态模型(如CLIP/Whisper)

在这里插入图片描述

在这里插入图片描述

第7周:安全与评估
  • 学习大模型安全与对齐技术

  • 掌握评估指标(BLEU/ROUGE/人工评测)

  • 分析幻觉、偏见等常见问题

第8周:行业实战 - 参与Kaggle/天池大模型竞赛
  • 复现最新论文(如Mixtral/Gemma)
  • 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
  • 学习MoE、Long Context等前沿技术
  • 探索AI Infra与MLOps体系
  • 制定个人技术发展路线图
    在这里插入图片描述
    👉福利篇👈
    最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值