2025 年以来,AI 大模型领域持续火热,从 DeepSeek、GPT-4、Claude 3 到 Gemini 2.0 等等,各家模型参数动辄千亿级,能力日新月异。
- 在应用层,RAG、Agent、ReAct、ToolFormer、MCP、Agent2Agent 等框架百花齐放;
- 在部署层,轻量化、蒸馏与 LoRA 微调成为新趋势;而在研究社区,“推理能力”、“长期记忆”、“多模态融合”成为讨论焦点。
然而,尽管我们每天都在讨论提示工程、RAG pipeline、embedding vector、MCP、Agent2Agent 和工具调用,**真正从头理解并掌握大模型(**LLM)的人却凤毛麟角。我们知道 GPT 很强,但却不知道它为什么强;我们能用 LangChain,但无法说清 Transformer 的每一层结构。
如果你也有这样的技术焦虑——即想要真正理解一个 LLM 的构建细节,并掌握其底层实现方式,那么接下来的这本书,值得你从头到尾读上三遍。
一本书,带你从零实现大模型
《Build a Large Language Model (From Scratch)》 是机器学习领域权威作者 Sebastian Raschka 的最新力作。
这老哥在 X 上有超过 30 万粉丝!他曾出版过畅销书《Python 机器学习》,拥有极强的“代码+理论”教学功底。这一次,他带领读者用 PyTorch 从零搭建一个完整的 LLM 系统。
这本书不仅讲解了 Transformer 的核心机制,更配备了高质量的开源代码仓库,让你真正“看得懂 + 跑得通 + 改得动”。这个 GitHub 仓库目前斩获 44.1K 的 Star!
https://github.com/rasbt/LLMs-from-scratch
内容结构:七大模块覆盖全流程
书籍围绕 LLM 的完整生命周期设计,共分为三大阶段:
七个章节:
1. 设计与初始化
模型架构、tokenizer、embedding、位置编码
2. 预处理与数据流水线
文本分块(chunking)、清洗与批处理
3. Transformer 模型构建
Attention、Multi-head、LayerNorm 等详解
4. 文本生成策略
从 Greedy 到 Top-k/Top-p,一网打尽
5. 大规模预训练
训练目标、学习率调度、梯度累积等工程细节
6. 下游微调实践
SFT、RLHF 的微调流程与训练技巧
7. 安全与指令对齐
Instruction Tuning 与有害输出的控制手段
每个章节都配有详实代码、图解原理与实验输出,便于快速上手与复现。
实践特色:不仅懂原理,更能动手训练
与市面上“纸上谈兵”的 LLM 入门书不同,本书有以下几个亮点:
- 代码实战导向:你将在自己电脑上构建出一个 GPT-2 等价模型,并运行文本生成与下游任务。
- 工程细节完整:包括混合精度、学习率调度、显存优化与分布式训练,完整覆盖训练全过程。
- 官方仓库维护活跃:核心模块拆分合理,便于复用、扩展或改写。
- 社区生态良好:已有多语言实现版本(如 Rust、Candle、JAX),社区贡献活跃。
为什么要看这本书?
✅ 真正理解 Transformer
而不是“知道有 Attention 就行”。通过亲手实现每一个子模块(Self-Attention、前馈网络、残差连接、LayerNorm),你将从底层建立起对大模型架构的认知。
✅ 从零构建自己的 LLM
不依赖 huggingface,也不只是调 API,而是动手完成数据准备、模型构建、训练、生成、微调,完成属于自己的“小 GPT”。
✅ 高性价比学习
不需要上千张 GPU,只需一张 8GB 显存显卡,你就能跑通训练全过程。
✅ 掌握底层能力,提升竞争力
在 LLM 技术飞速演进的今天,掌握“造模型”的能力,比“用模型”的 prompt skill 更有长远价值。真正能调参数、改结构、设计新模型的人,才是 AI 产业链顶端的人才。
推荐对象
- 想深入掌握 LLM 工作机制的开发者/研究者
- 有 Python 和 PyTorch 基础,希望从实战入门大模型的工程师
- 教育者/讲师,寻找可教学、可落地的 LLM 架构课程
- 创业者,想打造自研模型或轻量模型方案者
结语:掌握底层,才是与 AI 共舞的真正姿势
MCP 和 Agent2Agent 很火,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。
,Prompt 和 RAG 很强,但掌握 LLM 的底层逻辑,才是技术人最根本的护城河。如果你想真正走进大模型的内部世界,不再止步于“使用者”,而是成为一位“建造者”,这本书,就是你迈出第一步的最佳起点。
一书在手,从此心中无惧模型黑箱。
那么,如何快速系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周快速成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】