一般数据范围:
int型:10^9
long long型:10^18
double型:10^308
如果要存储的数据比这些还大,就需要使用大整数运算
大整数的存储
- 用数组将大整数的每一位数一次存储 整数的高位存储在数组的高位,整数的低位存储在数组的低位 (如235813有:d[0] = 3, d[1] = 1, d[2] = 8, d[3] = 5, d[4] = 3, d[5] = 2)
因为加法减法乘法都是从低位遍历到高位,只有除法从高位开始
所以加法减法乘法即时更新长度,而除法的长度提前确定 - 一般会定义一个d数组和记录长度的len组成的结构体来表示大整数
struct bign{
int d[1000];
int len;
bign() //构造函数初始化结构体变量,每次定义结构体变量时都会初始化
{
memset(d,0,sizeof(d));
len = 0;
}
};
//bign即为big number
大整数的四则运算
- 高精度加法
bign add(bign a, bign b)
{
bign c;
int carry = 0; //进位
for(int i = 0; i < a.len || i < b.len; i++)
{
int temp = a.d[i] + b.d[i] + carry;
c.d[c.len++] = temp%10;
carry = temp/10;
}
if(carry) //如果最后进位不为0,则直接赋值给结果的最高位
{
c.d[c.len++] = carry;
}
return c;
}
- 高精度减法(减法后高位可能有多余的0,要除去它们,也要保证结果至少有一位数)
bign sub(bign a, bign b)
{
bign c;
for(int i = 0; i < a.len || i < b.len; i++)
{
if(a.d[i] < b.d[i]) //不够减
{
a.d[i+1]--; //向高位借
a.d[i] += 10; //当前位加10
}
c.d[c.len++] = a.d[i] - b.d[i];
}
while(c.len - 1 > 0 && c.d[len-1] == 0) //去除高位的0,同时至少保留一位最低位
{
c.len--;
}
return c;
}
tip:乘除法a和b中如果存在负数,需要先记录下其负号,然后取它们的绝对值代入函数
- 高精度与低精度的乘法
bign multi(bign a, int b)
{
bign c;
int carry = 0; //进位
for(int i = 0; i < a.len; i++)
{
int temp = a.d[i] * b + carry;
c.d[c.len++] = temp%10;
carry = temp/10;
}
while(carry) //乘法的进位可能不止一位,因此用while
{
c.d[len++] = carry%10;
carry /= 10;
}
return c;
}
- 高精度与低精度的除法
bign divide(bign a, int b, int &r)
{
bign c;
c.len = a.len; //被除数的每一位和商的每一位是一一对应的,先令长度相等
for(int i = a.len - 1; i >= 0; i--)
{
r = r * 10 + a.d[i];
if(r < b) //不够除
c.d[i] = 0;
else
{
c.d[i] = r/b; //商
r = r%b;
}
}
while(c.len - 1 > 0 && c.d[c.len - 1] == 0)
{
c.len--;
}
return c;
}