Leetcode 74. Search a 2D Matrix

本文介绍了一种高效的搜索算法,用于在一特殊性质的二维矩阵中查找特定值。该矩阵的每一行从左到右递增排序,并且每行的第一个元素大于前一行的最后一个元素。文章提供了两种方法:一种是将二维矩阵视为一维数组进行二分搜索,时间复杂度为O(log(m*n));另一种是从右上角开始逐个检查,时间复杂度为O(m*n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following method:

The same question for the binary search., for this question, the middle element is int the middle of the array. We can think the two-dimensional array is a sorted array, Time complexity is O(log(m * n))

2

From the right up element and move until to the left end element. This may be called chain search for the 2-dimension sorted array. O(m  *   n)

public class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if(matrix==null || matrix.length==0 || matrix[0].length==0) 
            return false;
 
        int m = matrix.length;
        int n = matrix[0].length;
 
        int start = 0;
        int end = m*n-1;
 
        while(start<=end){
            int mid=(start+end)/2;
            int midX=mid/n;
            int midY=mid%n;
 
            if(matrix[midX][midY]==target) 
                return true;
 
            if(matrix[midX][midY]<target){
                start=mid+1;
            }else{
                end=mid-1;
            }
        }
 
        return false;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值