Leetcode 215. Kth Largest Element in an Array

本文深入探讨了如何利用快速排序的思想来高效地找到未排序数组中的第k大元素,详细解释了算法的核心逻辑、关键步骤,并通过实例演示了具体实现过程。

public class Solution {
    public int findKthLargest(int[] nums, int k) {
      int length = nums.length;

    }
    public int helper(int[] nums, int k, int start, int end){
      int pivot = nums[end];
      int left = start;
      int right = end;
      while(nums[left] <= pivot && left < right){
          left ++;
      }
      while(nums[right] >= pivot && left < right){
          right--;
      }
      if(left == right){
        break;
      }
      swap(nums, left, end);
      if (k == left + 1) {
		      return pivot;
	    } else if (k < left + 1) {
		      return getKth(k, nums, start, left - 1);
      } else {
		      return getKth(k, nums, left + 1, end);
	    }

    }

    public void swap(int[] nums, int a, int b){
      int tem = nums[a];
      nums[a] = nums[b];
      nums[b] = tem;
    }
}

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

For example,

Given [3,2,1,5,6,4] and k = 2, return 5.

这道题和快速排序的思路有点像,都是找pivot 然后转换位置,会写quick sort 这个题应该没问题


### 关于LeetCode215题的描述 LeetCode215题名为 **Kth Largest Element in an Array**,其问题是要求在一个无序数组中找到第k大的元素。需要注意的是,这里的“第k大”是指按照降序排列后的第k个位置上的数。 #### 解决方案概述 一种常见的解决方法是利用堆排序算法来实现这一目标。通过构建一个小顶堆(Min Heap),可以有效地获取到所需的第k大元素。这种方法的时间复杂度通常为 \(O(n \log k)\),其中 n 是数组长度,而 k 则是我们要找的目标次序[^4]。 以下是基于 Python 的解决方案代码: ```python import heapq def findKthLargest(nums, k): # 使用heapq模块中的nlargest函数直接找出前k大的数并返回最后一个即为我们想要的结果 return heapq.nlargest(k, nums)[-1] # 测试样例 nums = [3, 2, 1, 5, 6, 4] k = 2 print(findKthLargest(nums, k)) # 输出应为5 ``` 此段代码借助了 `heapq` 库里的 `nlargest` 方法简化操作流程,从而达到快速定位的目的[^5]。 另外还有一种方式就是先对整个列表完成全面排序之后再选取相应索引处数值作为最终答案;不过这种做法虽然直观却可能带来不必要的计算负担,在性能上未必优于上述提到过的最小堆策略。 ### 提供更高效的解答思路 除了运用内置库外还可以手动创建最大堆(MaxHeap), 并持续移除顶部直到剩下最后那个代表所需值为止; 或者采用分治法(Divide And Conquer Approach)像快速选择(Quickselect Algorithm)那样只关注局部区域进而减少整体迭代次数以提高效率至平均情况下的线性时间复杂度 O(N)[^6].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值