什么是大语言模型(LLM)?
大语言模型 (LLM) 是一种基于Transformer的深度学习模型,可以处理大量的自然语言文本,并从中学习知识和语言规律,从而提高对自然语言的理解和生成能力。LLM可以用于各种自然语言处理 (NLP)任务,如文本生成、阅读理解、常识推理等,这些任务在传统的方法下很难实现。LLM还可以帮助开发人员构建更强大和更智能的应用程序,如聊天机器人、智能搜索引擎等。随着ChatGPT的火爆,LLM得到了很多关注。LLM的规模和性能在近年来不断提高,但也面临着训练和部署的挑战。本文将介绍OpenAI中的一些基本概念和 Prmpt的最佳实践,以及如何使用OpenAI来帮助开发人员构建更强大和更智能的应用程序。
基本概念
再开始之前,我们先来了解一下OpenAI的一些基本概念。
提示(Prompt)
Prompt是一种指令,它告诉人工智能模型要执行什么任务或生成什么样的输出。在机器学习和自然语言处理中,Prompt通常是一些文本或语言,被输入到训练好的模型中,用于指示模型生成一个相应的输出。Prompt可以是一个问题、一个句子或一段话,其作用是引导人工智能模型生成我们想要的文本类型和内容。
例如,在一个智能语音助手应用程序中,当用户说“今天天气如何?”时,应用程序将“今天天气如何?”作为Prompt输入到自然语言处理模型中,该模型将生成一个回答,比如“今天是晴天,最高气温将达到25度”。在这个例子中,Prompt是“今天天气如何?”
补全(Completion)
Completion是指机器学习模型在接收到一个Prompt后,根据训练数据和模型的权重参数生成的一段自动完成的文本。这个文本是基于Prompt的上下文和语义,由模型自动预测出来的。
例如,在之前的例子中,“今天天气如何?”做为Prompt输入到语言处理模型中。它可能会自动完成这句话,生成一个完整的回答,如“今天天气晴朗,最高气温将达到25度。” 这里的回答就是Compl