题目大意:给两个整数n,k,给一个长度为n的整数数组a,由数组a得到二维数组b,b[i][j]=min(a[i],b[j]),我们要求在二维数组中1到k每个数字在b内的能将该数字框起来的最小矩形的长加宽。
思路:要找到包含该颜色的所有单元格的最小矩形,实际上该矩形一定是一个正方形,所以我们只要找到该矩形的最左最右即可,当我们在寻找颜色为x的单元格时,我们由公式b[i][j]=min(a[i],a[j])可以知道该矩形上面的所有数字都小于x,其下面的所有数字也都会小于x。
第一次TLE了
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = 1e5 + 10;
int a[maxn], s[maxn], e[maxn], visit[maxn];
int main()
{
int t;
cin >> t;
while (t--)
{
memset(visit, 0, sizeof visit);
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for (int i = 1; i <= k; i++)
{
s[i] = 1;
e[i] = n;
}
for (int i = 1; i <= n; i++)
{
visit[a[i]] = 1;//标记有该颜色
for (int j = 1; j <= i; j++)
{
if (a[i] <= a[j])
{
s[a[i]] = min(s[a[i]], j);//找到第一个大于等于的
if (s[a[i]] == 1)
{
s[a[i]] = j;
}
break;
}
}
}
for (int i = 1; i <= n; i++)
{
for (int j = n; j >= i; j--)
{
if (a[i] <= a[j])
{
e[a[i]] = max(e[a[i]], j);//最后一个大于等于的
if (e[a[i]] == n)
{
e[a[i]] = j;
}
break;
}
}
}
for (int i = 1; i <= k; i++)
{
if (visit[i])
{
cout << 2 * (e[i] - s[i] + 1);//矩形就在这之间
}
else
{
cout << 0;
}
if (i != k)
{
cout << ' ';
}
}
cout << endl;
}
}
AC代码
#include<iostream>
using namespace std;
const int maxn = 1e5 + 10;
int a[maxn], s[maxn], e[maxn];
int main()
{
int t;
cin >> t;
while (t--)
{
int n, k;
cin >> n >> k;
for (int i = 1; i <= k; i++)
{
s[i] = n + 1;
e[i] = 0;
}
int m = 0;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
m = max(m, a[i]);
s[a[i]] = min(s[a[i]], i);//该颜色第一次出现的位置
e[a[i]] = max(e[a[i]], i);//该颜色最后一次出现的位置
}
int pre = m, tmp;
for (int i = m - 1; i >= 1; i--)
{
if (s[i] == n + 1)
{
continue;
}
s[i] = min(s[pre], s[i]);//一定比比自己大的颜色的矩形大
e[i] = max(e[pre], e[i]);
pre = i;
}
for (int i = 1; i <= k; i++)
{
if (s[i] == n + 1)
{
cout << 0;
}
else
{
cout << 2 * (e[i] - s[i] + 1);
}
if (i != k)
{
cout << ' ';
}
}
cout << endl;
}
}