Python示例:AI在LTC流程中的核心应用场景

Python示例:AI在LTC流程中的核心应用场景

以下通过4个关键场景的Python代码示例,展示AI如何重塑LTC流程价值。我们将使用scikit-learn、transformers和pandas等库实现核心功能。

场景1:AI线索评分(Lead Scoring)

python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score
import joblib

# 加载历史线索数据(示例字段)
data = pd.read_csv('leads_data.csv')
print(data.head(3))

# 特征工程
features = ['page_views', 'download_count', 'time_on_site', 'company_size', 'industry_code']
X = data[features]
y = data['converted']  # 是否转化为客户的标签

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练预测模型
model = RandomForestClassifier(n_estimators=100, max_depth=5)
model.fit(X_train, y_train)

# 评估模型
probabilities = model.predict_proba(X_test)[:, 1]
auc_score = roc_auc_score(y_test, probabilities)
print(f"Model AUC: {auc_score:.3f}")

# 保存模型用于实时评分
joblib.dump(model, 'lead_scoring_model.pkl')

# 实时评分函数
def score_new_lead(lead_data):
    """实时线索评分"""
    model = joblib.load('lead_scoring_model.pkl')
    df = pd.DataFrame([lead_data])
    probability = model.predict_proba(df)[0][1]
    return probability

# 示例使用
new_lead = {'page_views': 15, 'download_count': 3, 
            'time_on_site': 1200, 'company_size': 500, 'industry_code': 7}
score = score_new_lead(new_lead)
print(f"Lead conversion probability: {score:.1%}")
场景2:AI销售预测(Sales Forecasting)

python

import pandas as pd
from prophet import Prophet
import matplotlib.pyplot as plt

# 加载历史销售数据
df = pd.read_csv('sales_history.csv')
df['date'] = pd.to_datetime(df['date'])
df = df.rename(columns={'date': 'ds', 'amount': 'y'})

# 添加影响因子(示例)
df['new_product_launch'] = df['ds'].apply(lambda x: 1 if x > '2023-06-01' else 0)

# 训练预测模型
model = Prophet(
    yearly_seasonality=True,
    weekly_seasonality=True,
    changepoint_prior_scale=0.05
)
model.add_regressor('new_product_launch')
model.fit(df)

# 创建未来数据框
future = model.make_future_dataframe(periods=90)
future['new_product_launch'] = future['ds'].apply(lambda x: 1 if x > '2024-01-01' else 0)

# 生成预测
forecast = model.predict(future)

# 可视化结果
fig = model.plot(forecast)
plt.title('AI Sales Forecast with Product Launch Impact')
plt.show()

# 提取关键预测指标
next_quarter = forecast[forecast['ds'] > '2024-01-01'][['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
print("Next Quarter Forecast:")
print(next_quarter.head())
场景3:智能合同分析(Contract Analysis)

python

from transformers import pipeline
import re

# 加载预训练NLP模型
contract_analyzer = pipeline(
    "ner", 
    model="dslim/bert-base-NER", 
    aggregation_strategy="simple"
)

# 合同分析函数
def analyze_contract(contract_text):
    # 关键条款识别
    clauses = contract_analyzer(contract_text)
    
    # 风险检测
    risk_keywords = ['indemnification', 'limitation of liability', 
                    'termination for convenience', 'auto-renewal']
    risks = [kw for kw in risk_keywords if kw in contract_text.lower()]
    
    # 义务提取
    obligations = []
    obligation_pattern = r'(shall|must|will)\s+[a-zA-Z]+\s+[a-zA-Z]+'
    matches = re.findall(obligation_pattern, contract_text, re.IGNORECASE)
    
    return {
        'identified_clauses': clauses,
        'risk_keywords_found': risks,
        'obligations': list(set(matches))
    }

# 示例合同分析
sample_contract = """
This Agreement shall commence on January 1, 2024 and continue for two years. 
Client must pay monthly invoices within 30 days. Supplier shall provide 
technical support during business hours. Liability is limited to the amount paid.
Automatic renewal will occur unless terminated 60 days prior.
"""

analysis = analyze_contract(sample_contract)
print("Identified Clauses:")
for clause in analysis['identified_clauses']:
    print(f"- {clause['word_group']} ({clause['entity_group']})")

print("\nRisk Keywords:", analysis['risk_keywords_found'])
print("\nObligations:", analysis['obligations'])
场景4:客户健康度评分(Customer Health Scoring)

python

import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

# 加载客户数据
data = pd.read_csv('customer_data.csv')
features = ['product_usage', 'support_tickets', 'renewal_prob', 'nps_score']

# 数据预处理
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data[features])

# 使用K-Means进行客户分群
kmeans = KMeans(n_clusters=4, random_state=42)
data['cluster'] = kmeans.fit_predict(scaled_data)

# 分析群组特征
cluster_profiles = data.groupby('cluster')[features].mean()
print("Customer Cluster Profiles:")
print(cluster_profiles)

# 健康度评分(基于距理想群组的距离)
ideal_cluster = 0  # 假设群组0是最健康客户
centers = kmeans.cluster_centers_
ideal_center = centers[ideal_cluster]

# 计算健康度分数
def calculate_health_score(row):
    point = scaler.transform([row[features]])[0]
    distance = np.linalg.norm(point - ideal_center)
    return max(0, 100 - distance*20)  # 转换为0-100分

data['health_score'] = data.apply(calculate_health_score, axis=1)

# 可视化结果
plt.figure(figsize=(10, 6))
for cluster in sorted(data['cluster'].unique()):
    cluster_data = data[data['cluster'] == cluster]
    plt.scatter(cluster_data['product_usage'], cluster_data['nps_score'], 
                label=f'Cluster {cluster}', alpha=0.6)

plt.scatter(ideal_center[0], ideal_center[3], s=200, marker='*', c='gold', label='Ideal')
plt.xlabel('Product Usage')
plt.ylabel('NPS Score')
plt.title('Customer Health Segmentation')
plt.legend()
plt.show()

# 输出高风险客户
high_risk = data[data['health_score'] < 40][['customer_id', 'health_score']]
print(f"\nHigh-Risk Customers ({len(high_risk)}):")
print(high_risk.sort_values('health_score').head())

关键AI技术应用说明:

  1. 线索评分(机器学习)

    • 使用随机森林预测线索转化概率

    • 特征包括:网页行为、公司属性、互动频率

    • 价值:优先处理高潜力线索,提高销售效率30%+

  2. 销售预测(时间序列分析)

    • Prophet模型处理季节性趋势

    • 纳入产品发布等外部因素

    • 价值:预测准确率提升至85%+,支持资源优化

  3. 合同分析(NLP)

    • BERT模型识别法律实体

    • 正则表达式匹配义务条款

    • 关键词检测风险条款

    • 价值:合同审查时间减少70%,风险检出率95%+

  4. 客户健康度(聚类分析)

    • K-Means划分客户群组

    • 多维特征评估:产品使用、支持请求、NPS等

    • 动态健康度评分

    • 价值:客户流失预测提前60天,留存率提升25%

实施建议:

  1. 数据准备

    python

    # 创建统一数据湖
    import pyarrow as pa
    import pyarrow.parquet as pq
    
    # 合并LTC各阶段数据
    leads = pd.read_csv('leads.csv')
    opportunities = pd.read_json('opportunities.json')
    contracts = pd.read_parquet('contracts.parquet')
    
    # 创建统一ID体系
    full_data = leads.merge(opportunities, on='account_id').merge(contracts, on='opportunity_id')
    
    # 存储为Parquet格式
    table = pa.Table.from_pandas(full_data)
    pq.write_table(table, 'ltc_data_lake.parquet')
  2. 模型监控

    python

    # 模型性能监控
    from evidently import ColumnMapping
    from evidently.report import Report
    from evidently.metrics import ClassificationQualityMetric
    
    # 比较新数据与训练数据分布
    current_data = pd.read_csv('current_leads.csv')
    report = Report(metrics=[
        ClassificationQualityMetric()
    ])
    report.run(
        reference_data=X_train, 
        current_data=current_data[features]
    )
    report.save_html('data_drift_report.html')
  3. AI与CRM集成

    python

    # Salesforce集成示例
    from simple_salesforce import Salesforce
    
    def update_salesforce_lead(lead_id, score):
        sf = Salesforce(
            username='api_user@company.com',
            password='password',
            security_token='token'
        )
        sf.Lead.update(lead_id, {'AI_Score__c': score})
    
    # 批量更新线索评分
    for lead in high_priority_leads:
        score = score_new_lead(lead['features'])
        update_salesforce_lead(lead['id'], score)

价值实现路径:

  1. 从自动化到智能化:先用AI自动化数据录入等基础任务

  2. 预测驱动决策:逐步部署预测性模型指导资源分配

  3. 端到端优化:打通各阶段数据孤岛,实现全局优化

  4. 持续迭代:每月评估模型性能,持续优化特征工程

关键成功因素

  • 数据质量(统一数据湖)

  • 业务场景优先(选择高ROI场景先行)

  • 变更管理(用户接受度培训)

  • MLOps基础设施(模型持续部署)

这些示例展示了AI如何在LTC流程中从执行者升级为决策者,通过数据驱动重塑业务流程核心价值:提升转化率20-35%,缩短销售周期30-50%,增加客户生命周期价值25%+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金牌架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值