彻底理解样本方差为何除以n-1

本文解释了为何样本方差的计算中分母为n-1而非n,通过定义无偏估计并推导其数学原理,揭示了样本方差如何成为总体方差的有效估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:


    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是无偏估计,比总体方差要小,要想是无偏估计就要调小分母,所以除以n-1,那么问题来了,为什么不是除以n-2、n-3等等。所以在这里彻底总结一下,首先交代一下无偏估计。

无偏估计

    以例子来说明,假如你想知道一所大学里学生的平均身高是多少,一个大学好几万人,全部统计有点不现实,但是你可以先随机挑选100个人,统计他们的身高,然后计算出他们的平均值,记为。如果你只是把作为整体的身高平均值,误差肯定很大,因为你再随机挑选出100个人,身高平均值很可能就跟刚才计算的不同,为了使得统计结果更加精确,你需要多抽取几次,然后分别计算出他们的平均值,分别记为:然后在把这些平均值,再做平均,记为:,这样的结果肯定比只计算一次更加精确,随着重复抽取的次数增多,这个期望值会越来越接近总体均值,如果满足,这就是一个无偏估计,其中统计的样本均值也是一个随机变量,就是的一个取值无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。

    介绍无偏估计的意义就是,我们计算的样本方差,希望它是总体方差的一个无偏估计,那么假如我们的样本方差是如下形式:


那么,我们根据无偏估计的定义可得:



    由上式可以看出如果除以n,那么样本方差比总体方差的值偏小,那么该怎么修正,使得样本方差式总体方差的无偏估计呢?我们接着上式继续化简:


到这里得到如下式子,看到了什么?该怎修正似乎有点眉目。

    如果让我们假设的样本方差乘以,即修正成如下形式,是不是可以得到样本方差是总体方差的无偏估计呢?


则:



    因此修正之后的样本方差的期望是总体方差的一个无偏估计,这就是为什么分母为何要除以n-1。


<think>我们被要求回答关于方差的定义和计算公式的问题,并按照严格的格式要求进行回答。 用户意图:了解方差的定义和概念 用户问题:方差的定义和计算公式 根据要求,我们需要: 1. 进行网络搜索(模拟搜索过程,实际中我们调用搜索工具,但这里我们根据已有知识生成答案) 2. 生成详细清晰的回答,组织为多个方法或步骤,步骤间换行。 3. 包含公式时使用$或$$包裹。 4. 最后添加相关问题部分。 方差是统计学中衡量数据离散程度的一个重要指标。它表示各个数据与平均数之差的平方的平均数。 方差的定义: 设有一组数据 $x_1, x_2, \dots, x_n$,其平均数为 $\bar{x}$,则方差 $s^2$ 定义为每个数据点与平均数之差的平方的平均值。 方差的计算公式: 总体方差样本方差的计算公式略有不同。 1. 总体方差(当数据是研究对象的全体时): $$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$ 其中,$N$ 表示总体中数据的个数,$\mu$ 表示总体的平均数($\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$)。 2. 样本方差(当数据是从总体中抽取的样本时,用样本估计总体方差时,分母用n-1): $$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$ 其中,$n$ 表示样本容量,$\bar{x}$ 表示样本的平均数($\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$)。 注意:样本方差的分母使用 $n-1$ 而不是 $n$,这是为了进行无偏估计(即用样本估计总体时,避免系统性偏差)。 另外,方差还有一个常用的简化计算公式(推导公式): 总体方差:$\sigma^2 = \frac{\sum_{i=1}^{N} x_i^2}{N} - \mu^2$ 样本方差:$s^2 = \frac{\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}}{n-1}$ 计算步骤: 计算方差通常包括以下步骤: 计算数据的平均数。 计算每个数据点与平均数的差的平方。 将这些平方差求和。 根据总体或样本选择分母(总体除以N,样本除以n-1)得到方差。 示例(样本方差计算): 数据:[4, 5, 7, 9, 10] 步骤1:计算平均数 $\bar{x} = (4+5+7+9+10)/5 = 7$ 步骤2:计算每个数据与平均数的差的平方:$(4-7)^2=9, (5-7)^2=4, (7-7)^2=0, (9-7)^2=4, (10-7)^2=9$ 步骤3:求和:9+4+0+4+9=26 步骤4:除以n-1:26/(5-1)=6.5 因此,样本方差为6.5。 代码实现(Python): 使用Python计算一组数据的样本方差: ```python import numpy as np data = [4, 5, 7, 9, 10] # 使用ddof=1表示分母为n-1,即样本方差 variance = np.var(data, ddof=1) print("样本方差:", variance) # 或者手动计算: n = len(data) mean = sum(data) / n squared_diffs = [(x - mean) ** 2 for x in data] variance_manual = sum(squared_diffs) / (n - 1) print("手动计算的样本方差:", variance_manual) ``` 运行结果: 样本方差: 6.5 注意:如果使用np.var默认参数(ddof=0)则计算的是总体方差除以n),所以指定ddof=1表示样本方差。 相关问题部分: 根据用户的问题和我们的回答,生成3个相关问题。 注意:严格按照格式要求,最后添加相关问题部分。</think>### 方差的定义和计算公式 **方差的统计学定义** 方差是衡量数据点偏离平均值程度的统计量,反映数据集的离散程度。其核心定义为:各数据点与均值之差的平方的平均值。 **方差的计算公式** 根据数据类型分为总体方差样本方差1. **总体方差公式**(适用于完整数据集) $$ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 $$ 其中: - $\sigma^2$:总体方差 - $N$:数据总量 - $\mu$:总体均值($\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$) - $x_i$:第 $i$ 个数据点 2. **样本方差公式**(适用于抽样数据) $$ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 $$ 其中: - $s^2$:样本方差 - $n$:样本容量 - $\bar{x}$:样本均值($\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$) - 分母 $n-1$ 为贝塞尔校正,确保无偏估计 **简化计算公式(计算优化版)** 避免重复计算均值,可直接用原始数据: - 总体方差: $$ \sigma^2 = \frac{\sum x_i^2}{N} - \mu^2 $$ - 样本方差: $$ s^2 = \frac{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}{n-1} $$ **计算步骤示例** 数据集:$[3, 5, 7, 9]$(样本1. 计算均值:$\bar{x} = (3+5+7+9)/4 = 6$ 2. 求平方差:$(3-6)^2=9,\ (5-6)^2=1,\ (7-6)^2=1,\ (9-6)^2=9$ 3. 求和:$9+1+1+9=20$ 4. 样本方差:$s^2 = 20/(4-1) \approx 6.67$ **代码实现(Python)** ```python import numpy as np data = [3, 5, 7, 9] # 样本方差(n-1校正) sample_var = np.var(data, ddof=1) print("样本方差:", sample_var) # 输出: 6.6667 # 总体方差(无校正) population_var = np.var(data, ddof=0) print("总体方差:", population_var) # 输出: 5.0 # 手动计算样本方差 n = len(data) mean = sum(data) / n squared_diff = sum((x - mean)**2 for x in data) manual_var = squared_diff / (n - 1) print("手动计算结果:", manual_var) # 输出: 6.6667 ``` **关键说明** - 方差单位为原始数据的平方(如 $m^2$),标准差 $\sigma$ 或 $s$ 为方差的平方根,恢复原单位 - 样本方差分母用 $n-1$ 修正抽样偏差,否则会低估总体方差 - 方差越大,数据越分散;方差为0时所有数据点相等
评论 106
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值