7-18 二分法求多项式单根 (20 分)

本文介绍了一种利用二分法寻找3阶多项式f(x)=a3x3+a2x2+a1x+a0在特定区间[a, b]内唯一单根的方法。详细阐述了二分法的步骤,并提供了代码实现,包括问题分析及代码优化过程。" 120288332,8346863,动态路线规划: MineMap自定义途径点拖动与删除功能,"['JavaScript', '地图开发', '路径规划', 'GIS']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目要求

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。

二分法的步骤为:

检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式 f ( x ) = a ​ 3 ​ ​ x ​ 3 ​ ​ ​ ​ + a ​ 2 ​ ​ x ​ 2 ​ ​ + a ​ 1 ​ ​ x + a ​ 0 f(x)=a_{​3}​​ x^{​3}​​ ​​ +a_{​2}​​ x^{​2}​​ +a​_{1}​​ x+a_{​0} f(x)=a3x3+a2x2+a1x+a0
​​ 在给定区间[a,b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数 a ​ 3 ​ ​ , a ​ 2 ​ ​ , a ​ 1 , ​ a ​ 0 ​ ​ a_{​3}​​, a_{​2}​​, a_{​1}, ​a_{​0}​​ a3,a2,a1,a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

二、代码

V0.9 未通过
import java.util.Scanner;

public class Main {
	public static double f(double a3, double a2, double a1, double a0, double x)
	{
		double result=0;
		result = a3*x*x*x + a2*x*x + a1*x + a0;
		return result;
	}

	public static void main(String[] args) {
		
		double a0, a1, a2, a3, a, b, fa, fb, mid=0, fmid;
        
		Scanner sc = new Scanner(System.in);
		a3 = sc.nextDouble();
		a2 = sc.nextDouble();
		a1 = sc.nextDouble();
		a0 = sc.nextDouble();
		a = sc.nextDouble();
		b = sc.nextDouble();		

		fa = f(a3, a2, a1, a0, a);
		fb = f(a3, a2, a1, a0, b);
		
		if(fa==0) {
			mid = a;
		}
		if(fb==0) {
			mid = b;
		}
		do {
			mid = (a+b)/2;
			fmid = f(a3, a2, a1, a0, mid);
			fa = f(a3, a2, a1, a0, a);
			fb = f(a3, a2, a1, a0, b);
			if( fa*fb<0 ) {	
				if ( fmid == 0) {
					break;
				}
			}			
			if ( fmid*fa>0 ) {
				a = mid;
			}
			if ( fmid*fb>0 ) {
				b = mid;
			}			
		} while( fa*fb<0 );
		
		System.out.printf("%.2f", mid);
		
	}

}
V1.4 优化后

在提交时,案例4–中点的f值很小但不一定是根,总是没有通过。开始以为是Java相比C语言运行很慢的原因,后来才发现并不是这样。是自己没有考虑周全。

当然语言肯定有影响,C语言案例1只用了2ms,而Java用了100ms。由此可以看出Java的运行效率确实要差些。

主要加了一个对边界的判断条件,使得在在[a,b]极小时跳出计算,得到一个估算值满足条件即可。其它的也对代码稍微整理一下。变得更加清爽整洁一些。

import java.util.Scanner;

public class Main {
	
	public static double a0, a1, a2, a3;
	
	public static double f(double x)
	{
		double result = a3*x*x*x + a2*x*x + a1*x + a0;
		return result;
	}
	
	public static double dichotomize(double a, double b) {
		double fa, fb, mid=0, fmid; 
		
		fa = f(a);
		fb = f(b);
		if(fa==0) {
			mid = a;
		} else if(fb==0) {
			mid = b;
		}
		while( fa*fb<0 ) {
			mid = (a+b)/2;
			fmid = f(mid);
			fa = f(a);
			fb = f(b);
			if ((b - a) < 0.00001){
				mid = (a+b)/2;
				break;
			}
			if ( fmid == 0) {
				break;
			}
			if ( fmid*fa>0 ) {
				a = mid;
			}
			if ( fmid*fb>0 ) {
				b = mid;
			}
		}
		
		return mid;		
	}
	
	public static void main(String[] args) {
		
		double a, b, mid;
        
		Scanner sc = new Scanner(System.in);
		a3 = sc.nextDouble();
		a2 = sc.nextDouble();
		a1 = sc.nextDouble();
		a0 = sc.nextDouble();
		a = sc.nextDouble();
		b = sc.nextDouble();		

		mid =  dichotomize(a, b);
		
		System.out.printf("%.2f", mid);
		sc.close();
	}

}

三、参考

循环-08. 二分法求多项式单根

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值