一、题目要求
二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f®=0。
二分法的步骤为:
检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
如果f(a)f(b)<0,则计算中点的值f((a+b)/2);
如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
如果f((a+b)/2)与f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
如果f((a+b)/2)与f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。
本题目要求编写程序,计算给定3阶多项式
f
(
x
)
=
a
3
x
3
+
a
2
x
2
+
a
1
x
+
a
0
f(x)=a_{3} x^{3} +a_{2} x^{2} +a_{1} x+a_{0}
f(x)=a3x3+a2x2+a1x+a0
在给定区间[a,b]内的根。
输入格式:
输入在第1行中顺序给出多项式的4个系数 a 3 , a 2 , a 1 , a 0 a_{3}, a_{2}, a_{1}, a_{0} a3,a2,a1,a0,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。
输出格式:
在一行中输出该多项式在该区间内的根,精确到小数点后2位。
输入样例:
3 -1 -3 1
-0.5 0.5
输出样例:
0.33
二、代码
V0.9 未通过
import java.util.Scanner;
public class Main {
public static double f(double a3, double a2, double a1, double a0, double x)
{
double result=0;
result = a3*x*x*x + a2*x*x + a1*x + a0;
return result;
}
public static void main(String[] args) {
double a0, a1, a2, a3, a, b, fa, fb, mid=0, fmid;
Scanner sc = new Scanner(System.in);
a3 = sc.nextDouble();
a2 = sc.nextDouble();
a1 = sc.nextDouble();
a0 = sc.nextDouble();
a = sc.nextDouble();
b = sc.nextDouble();
fa = f(a3, a2, a1, a0, a);
fb = f(a3, a2, a1, a0, b);
if(fa==0) {
mid = a;
}
if(fb==0) {
mid = b;
}
do {
mid = (a+b)/2;
fmid = f(a3, a2, a1, a0, mid);
fa = f(a3, a2, a1, a0, a);
fb = f(a3, a2, a1, a0, b);
if( fa*fb<0 ) {
if ( fmid == 0) {
break;
}
}
if ( fmid*fa>0 ) {
a = mid;
}
if ( fmid*fb>0 ) {
b = mid;
}
} while( fa*fb<0 );
System.out.printf("%.2f", mid);
}
}
V1.4 优化后
在提交时,案例4–中点的f值很小但不一定是根,总是没有通过。开始以为是Java相比C语言运行很慢的原因,后来才发现并不是这样。是自己没有考虑周全。
当然语言肯定有影响,C语言案例1只用了2ms,而Java用了100ms。由此可以看出Java的运行效率确实要差些。
主要加了一个对边界的判断条件,使得在在[a,b]极小时跳出计算,得到一个估算值满足条件即可。其它的也对代码稍微整理一下。变得更加清爽整洁一些。
import java.util.Scanner;
public class Main {
public static double a0, a1, a2, a3;
public static double f(double x)
{
double result = a3*x*x*x + a2*x*x + a1*x + a0;
return result;
}
public static double dichotomize(double a, double b) {
double fa, fb, mid=0, fmid;
fa = f(a);
fb = f(b);
if(fa==0) {
mid = a;
} else if(fb==0) {
mid = b;
}
while( fa*fb<0 ) {
mid = (a+b)/2;
fmid = f(mid);
fa = f(a);
fb = f(b);
if ((b - a) < 0.00001){
mid = (a+b)/2;
break;
}
if ( fmid == 0) {
break;
}
if ( fmid*fa>0 ) {
a = mid;
}
if ( fmid*fb>0 ) {
b = mid;
}
}
return mid;
}
public static void main(String[] args) {
double a, b, mid;
Scanner sc = new Scanner(System.in);
a3 = sc.nextDouble();
a2 = sc.nextDouble();
a1 = sc.nextDouble();
a0 = sc.nextDouble();
a = sc.nextDouble();
b = sc.nextDouble();
mid = dichotomize(a, b);
System.out.printf("%.2f", mid);
sc.close();
}
}