给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。
你最多可以完成两笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1]
输出:0
题解
本题和122题区别关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖
1.确定dp数组以及下标的含义:
一天一共就有五个状态
0 没有操作
1 第一次持有股票
2 第一次不持有股票
3 第二次持有股票
4 第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
2.转移方程:
dp[i][1]=Math.max(dp[i-1][0]-prices[i],dp[i-1][1])
dp[i][2]=Math.max(dp[i-1][1]+prices[i],dp[i-1][2])
dp[i][3]=Math.max(dp[i-1][2]-prices[i],dp[i-1][3])
dp[i][4]=Math.max(dp[i-1][3]+prices[i],dp[i-1][4])
3.初始化
难点是dp[0][3]取值:(dp[0][3]初始化为0是错的)
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少
dp[0][0]=0,dp[0][1]=-prices[0],dp[0][2]=0,dp[0][3]=-prices[0],dp[0][4]=0,
4.返回值:dp[4][4]还是dp[4][2]?
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。
也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的,所以是dp[4][4]
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][5];
dp[0][1]=dp[0][3]=-prices[0];
for(int i=1;i<prices.length;i++){
dp[i][1]=Math.max(dp[i-1][0]-prices[i],dp[i-1][1]);
dp[i][2]=Math.max(dp[i-1][1]+prices[i],dp[i-1][2]);
dp[i][3]=Math.max(dp[i-1][2]-prices[i],dp[i-1][3]);
dp[i][4]=Math.max(dp[i-1][3]+prices[i],dp[i-1][4]);
}
return dp[prices.length-1][4];
}
}