数据结构第一章一些习题

horner规则

/*霍纳规则
 * 求多项式A(x) = a(n)*x^n+a(n-1)*x^(n-1)+......+a(0)
 *化为 A(x) = (...((a(n)*x+a(n-1))x+...+a(1))x+a(0))
 *20121206
 */
#include<stdio.h>
#define N 5
 
int main (void)
{
	double a[N] = {1,2,3,4,5},x = 3;
	double sum = a[N-1]*x+a[N-2];
	int i;
	for (i = 1;i < N;i++)
	{
		sum = sum * x + a[N-i-1];
	}
	printf("%f\n",sum);
	
	return 0;
}

计算斐波那契数列

/*用递归计算斐波那契第N位的数
 * N大于2
 *20121206
 */
#include<stdio.h>

int fibonacci (int n)
{
	if (n > 2)
		return fibonacci(n-1) + fibonacci(n-2);
	else 
		return 1;
}

int main (void)
{
	int n;
	puts ("请输入一个整数(大于2)");
	scanf ("%d",&n);
	printf ("%d\n",fibonacci(n));
	return 0;
}

ackerman函数

/*Ackerman函数的递归实现
 *20121206
 */
#include<stdio.h>

long int ackerman (int m,int n)
{
	if (m == 0)
		return n+1;
	if (n == 0)
		return ackerman (m-1,1);
	return ackerman (m-1,ackerman (m,n-1));
}

int main (void)
{
	int m,n;
	puts ("请输入m和n");
	scanf ("%d%d",&m,&n);
	printf ("%ld\n",ackerman (m,n));
	return 0;
}
任意层数Hanoi塔移动次数

/*hanoi塔移动步骤的计算
 * 用递归实现
 *通项为hanoi(n)=2^n-1
 * 20121206
 */

#include<stdio.h>

int hanoi (int n)
{
	if (n > 1)
		return (2*hanoi(n-1)+1);
	else 
		return 1;
}
int main (void)
{
	int n;
	puts ("请输入n(n为hanoi塔的层数)");
	scanf ("%d",&n);
	printf ("至少需要移动%d步\n",hanoi(n));
	return 0;
}

推hanoi时用了高中时学的数列知识,这个还好记得一些。

_______________________________________________________________________________________

用double型的要好一点,能计算更多位的数字。我试了下能计算1000多层的塔的移动步骤的计算

/*hanoi塔移动步骤的计算
  2  * 用递归实现
  3  *通项为hanoi(n)=2^n-1
  4  * 20121206
  5  */
  6 
  7 #include<stdio.h>
  8 
  9 double hanoi (double n)
 10 {
 11         if (n > 1)
 12                 return (2*hanoi(n-1)+1);
 13         else
 14                 return 1;
 15 }
 16 int main (void)
 17 {
 18         double n;
 19         puts ("请输入n(n为hanoi塔的层数)");
 20         scanf ("%lf",&n);
 21         printf ("至少需要移动%.0f步\n",hanoi(n));
 22         return 0;
 23 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值