毕设
一、解释XGBoost算法。
首先,想象我们要预测一个地区的房价。影响房价的因素可能有很多,比如房子的面积、位置、楼层、装修等。如果我们只用一个简单的方法(比如只看面积)来预测,可能效果不会太好,因为还有很多其他因素没有考虑。这就是所谓的“弱分类器”。
但是,如果我们把多个简单的方法(多个弱分类器)结合起来,可能就能得到更准确的预测结果。这就是集成学习的基本思想。
XGBoost就是一种集成学习方法,它使用了很多棵决策树(CART树)来共同预测房价。每棵决策树都是基于之前所有树的预测结果来进行学习的,它的目标是尽可能地修正之前的错误,使得整体的预测结果更加准确。
具体来说,XGBoost的做法是这样的:
-
首先,它会建立第一棵决策树,并基于这棵树的预测结果来计算误差(也就是预测值与实际值之间的差距)。
-
然后,它会根据这个误差来建立第二棵决策树,这棵树的目标是尽可能地修正第一棵树的错误。
-
接着,再建立第三棵、第四棵……每一棵新的树都是基于之前所有树的预测结果来进行学习的。
通过这样不断地增加新的树并修正之前的错误,XGBoost能够逐渐提高预测的准确性。
而且,XGBoost还有一个很聪明的地方,就是它不仅仅考虑预测结果的误差,还会考虑模型的复杂度。这是因为,如果模型太复杂,虽然可能在训练数据上表现得很好,但在新的数据上可能就不那么准确了(这就是所谓的“过拟合”)。所以,XGBoost在学习的过程中会尽量保持模型的简单,避免过拟合。
最后,XGBoost还支持并行处理和缺失值处理等功能,这使得它在处理大规模数据或含有缺失值的数据时也能表现出色。
总的来说,XGBoost就是一种非常强大且灵活的机器学习算法,它能够通过集成多个简单的方法来提高预测的准确性,并且在学习的过程中还会考虑模型的复杂度来避免过拟合。
决策树
决策树,简单来说,就像一棵真正的树,从根开始,分出许多树枝,每个树枝再分出更多的小枝,直到最后形成树叶。在这棵“树”上,每一个分叉点都代表一个决策,而每一个树枝都代表这个决策的一个可能结果。
举个例子,假设我们要决定今天是否要出门散步。我们可以根据天气情况来做出决策。如果天气晴朗,我们可能会选择出门;如果下雨,我们可能选择留在家里。这里,“是否要出门散步”就是我们的目标问题,而“天气情况”就是我们的决策依据。
如果我们把这个问题画成决策树,那么根节点就是“是否要出门散步”,然后从这个节点分出两个树枝,一个代表“天气晴朗”,另一个代表“下雨”。对于“天气晴朗”这个树枝,我们可以再分出一个树枝表示“选择出门”,而对于“下雨”这个树枝,我们可以分出一个树枝表示“选择留在家里”。
这就是决策树的基本思想:通过一系列的决策(分叉点)和可能的结果(树枝),最后得到我们的目标(树叶)。在实际应用中,决策树可以处理更复杂的问题,包含更多的决策和结果,并且可以通过训练数据来自动构建和优化。
在机器学习中,决策树是一个常用的预测模型。它可以根据输入的特征(比如天气情况、温度等)来预测一个结果(比如是否要出门散步)。通过训练数据,决策树可以学习到哪些特征对预测结果有影响,以及如何根据这些特征来做出决策。
总的来说,决策树是一种直观、易于理解的决策分析方法,可以帮助我们更好地理解和解决问题。
并行处理
并行处理,简单来说,就是多个任务或子任务在同一时间内同时执行,而不是一个接一个地执行。这就像你同时做几件事情,比如一边做饭一边听音乐,这样效率会更高。
在计算机中,并行处理可以利用多个处理器或核心来同时处理多个任务。比如,当你有一个很大的计算任务时,你可以把这个任务拆分成几个小部分,然后让多个处理器同时去处理这些小部分。这样,原本需要很长时间才能完成的任务,现在就可以更快地完成了。
并行处理的好处是可以提高效率,减少等待时间。它广泛应用于各种领域,比如数据分析、图像处理、科学计算等。
缺失值处理
缺失值处理,就是在数据集中找到那些缺失或不完整的信息,并想办法填补它们或者处理它们。这就像你有一个不完整的表格,有些格子里没有数据,你需要去填上它们。
处理缺失值有几种方法。一种简单的方法是直接删除那些有缺失值的记录或特征。但这样做可能会丢失一些有用的信息。另一种方法是使用统计方法来估算缺失的值,比如用平均值、中位数等来填补。还有一种方法是基于其他特征的关系来预测缺失的值。
缺失值处理在数据分析和数据挖掘中非常重要。如果忽略缺失值,可能会导致结果不准确,甚至得出错误的结论。因此,正确地处理缺失值是确保数据质量和分析结果准确性的关键步骤。
综上所述,并行处理和缺失值处理都是数据处理和分析中非常重要的概念和方法。并行处理可以提高计算效率,而缺失值处理则确保数据的完整性和准确性。
分裂结点算法:
分裂结点算法就像是处理一堆数据时的“分家”方法。当数据变得太多或太复杂时,我们就需要把它们分成几部分,这样每部分的数据就更容易处理。分裂结点就是这个“分家”的过程,它按照一定的规则将数据分成几部分,使得每部分数据都能更好地被理解和处理。
贪心法:
贪心法就像我们在做选择时,每次都选择眼前看起来最好的那个选项,而不是考虑所有可能的选项后再做决定。这种方法虽然可能在某些情况下不是最优的,但它简单、快速,而且大多数情况下都能得到一个不错的结果。
L1 L2正则化:
正则化就像是给模型加上一个“紧箍咒”,防止它“胡思乱想”或“过度复杂”。L1和L2是两种不同的“紧箍咒”。L1正则化会尽量让模型的参数变得简单,而L2正则化则是尽量让模型的参数不要太大。这样,模型在处理数据时会更加稳定,不容易出现“过拟合”的情况。
二阶泰勒展开:
泰勒展开就像是用一系列简单的函数(比如多项式)来近似一个复杂的函数。二阶泰勒展开就是用了两个简单的函数来近似。这就像我们用两条直线来近似一个曲线,虽然不能完全一样,但在某些地方已经足够接近了。这样,我们就可以用更简单的方法来处理原本复杂的函数。
随机森林(RF):
随机森林就像是一片由很多树组成的森林,每棵树都是一个简单的模型。当我们有问题需要解决时,不是只问一棵树,而是问整片森林。这样,我们就能得到更准确、更稳定的答案。同时,随机森林还支持样本和特征的随机抽取,这样可以降低运算量,防止模型过于复杂。
随机森林是一种非常强大的机器学习模型,它就像是由很多棵决策树组成的“大森林”。每一棵树在生长的过程中,都会随机地从训练数据中抽取一部分来学习,并基于这部分数据做出预测。这个过程叫做自助聚集(bagging)。
想象一下,你有一堆弹珠,每颗弹珠都代表着训练数据中的一个样本。在构建随机森林中的每棵树时,你会随机地从这堆弹珠中抓一把,然后放回去再抓。这样,有些弹珠可能会被多次抓到,而有些则可能一次都没被抓到。这就是有放回抽样。
这样做的好处是,每棵树都是在不同的数据集上训练的,所以它们各自会学到不同的东西。这就像是一群朋友在谈论同一个话题,但每个人因为经历不同,所以都有自己的见解。当这些树汇集起来做预测时,就像是这群朋友一起讨论并达成共识,这样通常能得到更准确的结果。
另外,随机森林中的每棵树在做出决策时,还会随机选择一部分特性(特征)来考虑。这意味着,即使两棵树是基于相同的数据集训练的,它们也可能会因为考虑的特性不同而做出不同的决策。这进一步增加了模型的多样性和准确性。
所以,随机森林的强大之处在于它结合了多个相对简单的模型(决策树),通过自助聚集和随机选择特性来增强整体的预测能力。这就像是一群各有所长的专家一起合作解决问题,往往能取得比单个专家更好的效果。
自助聚集 (Bagging):
Bagging 是一种集成学习技术,它通过对原始数据集进行重采样(有放回抽样)来生成多个训练子集,并为每个子集训练一个模型。然后,这些模型的预测会被结合起来(通常是平均或投票)以产生最终的预测。Bagging 的主要目标是提高模型的稳定性和准确性,通过减少方差。
随机森林:
随机森林是Bagging的一个具体实现,它使用决策树作为基学习器。在随机森林中,每个决策树都是在自助聚集生成的训练子集上训练的。此外,随机森林还有一个额外的随机性来源:在构建每棵树的每个节点时,并不是考虑所有的特征,而是仅从所有特征的一个随机子集中选择一个最佳的特征来划分。这有助于进一步减少模型之间的相关性,从而提高整体模型的性能。
对训练数据子集进行随机抽样:
在随机森林中,每个决策树都是在自助聚集生成的训练子集上训练的。这种有放回的抽样意味着一些数据点可能会被多次选中,而另一些可能一次都不会被选中。这种抽样方法有助于创建不同的训练子集,从而训练出不同的决策树。
基于不同的数据集和特性进行训练:
由于每个决策树都是在不同的训练子集上训练的,并且每个节点只考虑特征的一个随机子集,因此这些树不仅基于不同的数据集进行训练,而且还使用不同的特性来做出决策。这种多样性有助于减少模型的方差,提高整体预测性能。
汇总预测结果:
在随机森林中,所有决策树的预测都会被结合起来以产生最终的预测。对于分类问题,这通常是通过投票来完成的(即,选择被最多树预测的类别)。对于回归问题,预测通常是平均的(即,取所有树预测的平均值)。
总之,随机森林通过结合自助聚集和决策树的随机性,成功地减少了模型的方差,提高了预测性能,并使其对噪声和异常值更加稳健。
本文采用房价预测研究的评价指标有
-
均方误差(Mean Squared Error,MSE):计算预测值与实际值之间的平均差异的平方。
MSE 越小,表示模型的预测越准确。
-
均方根误差(Root Mean Squared Error,RMSE):MSE 的平方根,用于度量预测值与实际值之间的平均差异。
RMSE也越小越好。
-
平均绝对误差(Mean Absolute Error,MAE):计算预测值与实际值之间的平均绝对差异。
MAE越小,表示模型的预测越准确。
-
决定系数(difficient of Determination,R-squared):用于衡量回归模型对观测数据的拟合程度。
R-squared的取值范围为0到1,越接近1表示模型拟合效果越好。
梯度提升
梯度提升(Gradient Boosting)是一种非常有效的机器学习算法,特别适用于回归和分类问题。为了让你更容易理解,我会用一个简单的比喻和解释来介绍它。
想象一下你正在参加一个寻宝游戏,你的目标是在一片森林中找到一个隐藏的宝藏。一开始,你可能只是随机地四处走走,希望能碰巧找到它。但是,每次你走一段距离,你都会得到一些关于你离宝藏还有多远的线索(这就像是机器学习中的“损失函数”,它告诉你当前的预测结果和实际结果之间的差距)。
梯度提升的工作原理就像这样:
-
开始时的随机猜测:首先,你会随机选择一个方向开始走(这就像是梯度提升算法中的初始模型,它可能只是一个随机的猜测)。
-
评估与调整:你走了一段距离后,你会得到一个线索,告诉你离宝藏还有多远,以及你应该往哪个方向走(这就像是计算损失函数的梯度)。这个线索会告诉你,你之前选择的方向是不是正确的,以及你应该如何调整你的方向。
-
逐步逼近:根据这个线索,你会调整你的方向,并继续走一段距离。每次你移动,你都会得到新的线索,帮助你更接近宝藏(这就像是梯度提升算法中的迭代过程,每次迭代都会根据损失函数的梯度来训练一个新的弱学习器,并将其添加到模型中)。
-
组合多个线索:你不只是依赖一个线索,而是将所有的线索组合起来,形成一个更准确的地图或方向感(这就像是梯度提升算法中的“集成”过程,它将所有的弱学习器组合成一个强学习器)。
-
找到宝藏:最终,通过不断地评估和调整你的方向,你会越来越接近宝藏,并最终找到它(这就像是梯度提升算法逐渐减小预测误差,提高模型的性能)。
在机器学习的上下文中,梯度提升通过串行训练一系列弱学习器(如决策树),并将它们组合成一个强学习器来工作。每个弱学习器都是基于前一个学习器的预测误差进行训练的,从而逐步优化模型的预测能力。通过这种方式,梯度提升能够充分利用每个弱学习器的优点,并克服它们的缺点,从而得到一个更准确、更鲁棒的模型。
XGBoost与GBDT的区别
好的,我会尽量用通俗易懂的方式来解释XGBoost与GBDT(梯度提升决策树)的不同之处,特别是关于损失函数的二阶泰勒展开式、拟合速度、预测精度、正则化、并行处理和缺失值处理等方面的内容。
首先,我们知道GBDT是一个强大的机器学习算法,它通过构建多棵决策树来逐步逼近真实值。但XGBoost在GBDT的基础上做了一些改进,让它更加强大和高效。
-
二阶泰勒展开式:
-
GBDT在拟合过程中,只使用了损失函数的一阶导数信息。但XGBoost更进一步,它使用了损失函数的二阶泰勒展开式。这就像是,当我们要找一个山谷的最低点时,GBDT只考虑了山谷的坡度(一阶导数),而XGBoost还考虑了坡度变化的速度(二阶导数)。因此,XGBoost能够更准确地找到最佳位置,从而使得拟合速度更快,预测精度更高。
-
-
正则化方法:
-
在构建模型时,我们总是希望模型既不过于简单(欠拟合),也不过于复杂(过拟合)。XGBoost采用了正则化方法,通过在目标函数中加入正则项来控制模型的复杂度。这就像是在给模型加一个“刹车”,防止它走得太远或太偏。正则化项中包含了树的叶子节点个数、叶子节点权重的L2范式等,这些都可以帮助模型找到最佳的平衡点。
-
-
并行处理:
-
在大数据时代,数据量和特征维度都非常庞大。为了加快模型的训练速度,XGBoost采用了并行处理技术。具体来说,它可以将数据划分为多个部分,然后同时训练多个基学习器。这样一来,我们就可以充分利用多核处理器的能力,大大提高模型的训练速度。
-
-
缺失值处理:
-
在实际的数据集中,经常会遇到缺失值的情况。如果直接忽略这些缺失值,可能会导致模型性能下降。但XGBoost能够很好地处理这些缺失值。在构建决策树时,它会为缺失值设定一个分支,并计算相应的增益。这样一来,即使数据中存在缺失值,XGBoost也能够正常进行拟合,并且还能提高模型的鲁棒性和预测性能。
-
综上所述,XGBoost通过引入损失函数的二阶泰勒展开式、采用正则化方法、支持并行处理和缺失值处理等功能,使得它比GBDT具有更快的拟合速度、更高的预测精度和更强的鲁棒性。
二、源码分析
1、结构分析
src --main ---java ----com.zl -----config -----controller -----entity -----mapper -----service -----utils -----vo ----GProApplication---resources
----python
-----model2.pkl -----model_predict.py
-----test.py
----static
-----admin -----js
-----layer
-----layui
-----style
-----login.html
-----loginbg.jpg
-----register.html
----application.yml
您的项目结构看起来是一个典型的Spring Boot项目结构,其中还包含了一些用于前端资源的文件夹和Python相关的资源。我会为您详细解释每个部分的作用以及它们是如何相互调用的。
目录结构
-
src/main/java 这是Java源代码的根目录。
-
com.zl 这是您的包名。在Java中,包用于组织类,以避免命名冲突。
-
config 存放配置类,如Spring的配置、数据库连接配置等。
-
controller 存放控制器类,这些类负责处理HTTP请求并返回响应。它们通常与前端页面或API调用者交互。
-
entity 存放实体类,通常用于映射数据库中的表。
-
mapper 存放MyBatis的Mapper接口,这些接口定义了与数据库交互的SQL操作。
-
service 存放业务逻辑类,这些类通常调用mapper来执行数据库操作,并处理业务逻辑。
-
utils 存放工具类,这些类包含了一些通用的静态方法,用于简化代码。
-
vo 存放值对象(Value Object),通常用于在controller和service之间传递数据。
-
GProApplication 这是Spring Boot的启动类,通常包含
main
方法,用于启动整个Spring Boot应用。 -
src/main/resources 存放资源文件,如配置文件、静态资源等。
-
application.yml Spring Boot的配置文件,用于定义应用的配置信息,如数据库连接信息、端口号等。
-
python 存放Python相关的资源,如模型文件(
model2.pkl
)和Python脚本(model_predict.py
、test.py
)。 -
static 存放静态资源,如HTML、CSS、JavaScript文件以及图片等。这些资源通常被直接服务于前端。
编写顺序
MyBatis-Plus 是一个 MyBatis 的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发、提高效率而生。它提供了很多便利的功能,比如自动的 CRUD 操作、Active Record 模式等。
以下是一个基于 MyBatis-Plus 的编写顺序和思路:
-
entity(实体类)
-
定义实体类,并添加 MyBatis-Plus 提供的注解,如
@TableName
来指定对应的数据库表名,@TableId
来标识主键等。
-
-
mapper(数据访问层)
-
MyBatis-Plus 提供了
BaseMapper
接口,它包含了基本的 CRUD 方法。你可以创建一个接口继承BaseMapper<T>
,其中T
是对应的实体类。这样你就不需要手动编写大量的 SQL 语句了。
-
-
vo(视图对象)
-
如果需要,编写视图对象用于前后端数据传输。
-
-
service(服务层)
-
编写服务层,这里你可以定义一些复杂的业务逻辑。如果你只是想简单地调用 CRUD 操作,那么服务层可能很薄,只需要调用 mapper 接口的方法即可。如果需要复杂的逻辑,可以添加更多的业务方法。
-
-
utils(工具类)
-
根据需要编写通用的工具类。
-
-
controller(控制器)
-
编写控制器类,处理 HTTP 请求,并调用服务层的方法。
-
思路
-
需求分析
-
同上,深入理解业务需求。
-
-
设计
-
设计数据库表结构,定义实体类。
-
设计服务层的业务逻辑。
-
设计 API 接口。
-
-
编码
-
利用 MyBatis-Plus 的特性,快速构建 mapper 接口。
-
编写服务层,如果需要的话,扩展或自定义业务逻辑。
-
编写控制器,处理请求和响应。
-
-
测试
-
利用 MyBatis-Plus 提供的特性编写单元测试,验证 mapper 和服务层的正确性。
-
进行集成测试,确保整个流程的通顺。
-
-
优化和重构
-
根据 MyBatis-Plus 的最佳实践优化代码。
-
利用 MyBatis-Plus 的新特性重构旧代码。
-
-
文档和维护
-
编写项目文档。
-
维护和更新系统。
-
使用 MyBatis-Plus 可以大大简化你的开发过程,特别是 CRUD 操作的编写。但是,仍然需要注意代码的结构和可维护性,确保项目能够长期稳定运行。同时,要关注 MyBatis-Plus 的版本更新,及时使用新特性来优化代码。
相互调用关系
-
前端与Controller 用户通过浏览器访问前端页面,前端页面通过HTTP请求与Controller进行交互。Controller处理请求,并返回响应给前端。
-
Controller与Service Controller调用Service层的方法来处理业务逻辑。Service层可能调用多个Mapper来执行数据库操作,并返回处理结果给Controller。
-
Service与Mapper Service层调用Mapper接口定义的方法,与数据库进行交互。Mapper使用MyBatis的注解或XML文件来定义SQL操作。
-
Python资源与Java代码 如果您的Java代码需要与Python脚本或模型交互,您可能需要使用Java的
Runtime.getRuntime().exec()
方法或类似的机制来执行Python脚本,并处理其输出。对于模型文件(如model2.pkl
),您可能需要使用Python的序列化/反序列化库(如pickle)在Java中加载和使用它,或者使用其他跨语言的模型交换格式(如ONNX)。 -
资源文件
application.yml
配置文件中的信息可以通过Spring Boot的@Value
注解或@ConfigurationProperties
注解注入到Java类中。静态资源文件(如HTML、CSS、JavaScript)直接由Web服务器提供,通常不直接与Java代码交互,而是通过HTTP请求访问。
这种结构的设计是为了实现关注点分离,使得不同的组件(如前端、后端业务逻辑、数据库操作等)能够独立地开发和维护,提高了代码的可读性和可维护性。
数据流动
当用户点击登录按钮时,数据流动和后端方法的调用通常遵循以下步骤,这里我会结合常见的Web应用架构(如Spring Boot + MyBatis-Plus + 前端框架)来详细解释:
1. 前端交互
步骤:
-
用户在前端的登录表单中输入用户名和密码。
-
用户点击登录按钮,触发前端的登录事件处理函数。
数据流动:
-
前端JavaScript收集表单数据(用户名和密码)。
-
数据被封装成JSON格式或查询参数,准备发送给后端。
2. HTTP请求
步骤:
-
前端使用AJAX(如jQuery的$.ajax、Axios等)或Fetch API发送HTTP请求到后端。
-
请求通常是POST请求,发送到后端的登录接口(如
/api/login
)。
数据流动:
-
用户名和密码作为请求体(对于POST请求)或查询参数(对于GET请求)发送给后端。
-
请求头可能包含一些认证信息,如token或cookie(如果是非首次登录)。
3. 后端接收请求
步骤:
-
后端的Controller层接收到前端发送的HTTP请求。
-
Controller层调用对应的服务(Service)或Mapper(数据访问层)来处理业务逻辑和数据访问。
数据流动:
-
请求中的数据(用户名和密码)被Controller层的方法接收。
-
数据被传递给Service层进行业务处理。
4. 业务逻辑处理
步骤:
-
Service层接收到数据后,进行业务逻辑处理。
-
这可能包括验证用户名和密码的正确性、查询数据库等。
数据流动:
-
Service层可能调用Mapper接口的方法来执行数据库查询。
-
MyBatis-Plus自动将Mapper接口的方法转换为SQL语句并执行。
5. 数据库交互
步骤:
-
Mapper接口通过MyBatis-Plus与数据库交互。
-
执行查询或更新操作,如根据用户名查询用户信息并验证密码。
数据流动:
-
SQL语句执行后,数据库返回查询结果(如用户信息)或更新操作的结果(如成功或失败)。
-
结果被Mapper接口接收,并返回给Service层。
6. 响应构建与返回
步骤:
-
Service层根据数据库返回的结果构建响应对象。
-
响应对象被传递给Controller层,并最终作为HTTP响应返回给前端。
数据流动:
-
如果登录成功,响应中可能包含用户的token或session信息。
-
如果登录失败,响应中可能包含错误信息。
7. 前端处理响应
步骤:
-
前端接收到后端的HTTP响应。
-
前端根据响应内容执行相应的操作,如跳转到主页、显示错误信息等。
数据流动:
-
如果登录成功,前端可能将token存储到localStorage或cookie中,并跳转到应用的主页。
-
如果登录失败,前端可能显示错误提示信息。
这就是从用户点击登录开始,数据是如何流动以及如何调用后端方法的一个大致流程。实际项目中,可能还涉及更多的细节和步骤,如错误处理、日志记录、安全性考虑等。但上述流程提供了一个基本的框架,帮助你理解数据在前后端之间的流动和交互过程。
2、pom文件分析
mybatis-plus-boot-starter
<!-- TODO mybatisPlus 启动器 --> <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>3.4.1</version> </dependency>
用途:这是MyBatis-Plus的Spring Boot启动器。MyBatis-Plus是一个强大的MyBatis扩展工具,在MyBatis的基础上只做增强不做改变,简化开发、提高效率。 版本:您使用的是3.4.1版本。
mybatis-plus-generator
用途:这是MyBatis-Plus的代码生成器。它可以帮助您自动生成Mapper、Model、Service、Controller等代码,极大地提高了开发效率。 版本:同样使用3.4.1版本。
spring-boot-starter-test 和 junit
用途:这些是测试依赖项。spring-boot-starter-test
提供了Spring Boot应用所需的测试库,包括JUnit、Mockito等。junit
是Java的单元测试框架,用于编写和执行测试用例。 版本:您使用的是Spring Boot的默认测试启动器版本和JUnit 4.12版本。
lombok
用途:Lombok是一个Java库,可以通过注解来减少Java代码的冗余。例如,使用@Data
注解可以自动生成getter、setter、equals、hashCode和toString方法。这可以大大简化POJO(Plain Old Java Object)的编写,使代码更加简洁。 版本:您没有指定Lombok的版本,Maven将会从中央仓库获取最新版本。
velocity-engine-core
<dependency> <groupId>org.apache.velocity</groupId> <artifactId>velocity-engine-core</artifactId> <version>2.2</version> </dependency>
-
简介:
velocity-engine-core
是 Apache Velocity 的核心库。Apache Velocity 是一个基于 Java 的模板引擎,它允许开发者使用简单的模板语言来引用 Java 对象中的数据,从而生成文本输出。这种输出可以是 HTML、XML、SQL 或任何其它文本格式。 -
用途:常用于动态内容生成,例如网页渲染、报告生成等。通过定义模板和传入数据,Velocity 可以生成所需格式的文本输出。
-
特点:模板语法简单易懂,支持复杂的逻辑处理和数据格式化,能够灵活地生成文本内容。
springfox-swagger2(版本2.6.0)和springfox-swagger-ui(版本2.6.0)
<!-- TODO swagger start--> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger2</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger-ui</artifactId> <version>2.6.0</version> </dependency> <!-- TODO swagger end-->
-
简介:Swagger 是一个用于生成、描述、调用和可视化 RESTful 风格的 Web 服务的规范和完整框架。
springfox-swagger2
和springfox-swagger-ui
是这个框架在 Spring 应用中的集成库。 -
用途:用于生成 API 文档。
springfox-swagger2
提供了 API 文档生成的核心功能,而springfox-swagger-ui
则提供了 API 文档的可视化界面,使开发者能够方便地查看和测试 API。 -
这两个依赖项是Swagger的Spring Boot集成。Swagger是一个用于API设计和文档化的工具,它可以帮助您定义RESTful API并自动生成文档。
springfox-swagger2
提供了API的文档化功能,而springfox-swagger-ui
则提供了API的可视化界面,允许您直接在浏览器中查看和测试API。 -
特点:支持自动生成 API 文档,减少了手动编写和维护文档的工作量;提供了丰富的注解和配置选项,可以灵活地定制生成的文档内容;可视化界面友好,易于使用。
aliyun-sdk-oss
-
简介:这是阿里云对象存储服务(Object Storage Service,简称 OSS)的 SDK。
-
用途:用于在 Java 应用中方便地访问和操作阿里云 OSS。通过 SDK,开发者可以上传、下载、删除文件,管理存储桶(Bucket)等。
-
特点:提供了丰富的 API,支持多种文件访问方式(如 HTTP/HTTPS、FTP 等);具有高可靠性、高可扩展性和低成本的特点,适用于各种数据存储需求。
commons-logging
-
简介:这是一个经典的通用日志框架。
-
用途:提供了记录日志的通用 API,具体实现可以由其他日志记录框架(如 log4j、JDK Logging 等)来完成。
-
特点:简化了日志记录的操作,使得开发者可以在不同的日志记录框架之间轻松切换;同时,它也为那些没有使用特定日志框架的应用提供了简单的日志记录功能。
joda-time
-
简介:这是一个常用的时间处理类库。
-
用途:提供了丰富的日期和时间处理功能,用于替代 Java 标准库中的日期和时间处理类。
-
特点:支持多种日期和时间格式;提供了易于使用的 API,方便开发者进行日期和时间的计算、格式化等操作;同时,它的设计也更加灵活和强大,能够满足复杂的日期和时间处理需求。
spring-mock
-
简介:在 Spring 中,Mock 测试是一种针对应用程序中的组件进行单元测试的方法。
-
用途:用于在测试过程中模拟外部依赖的行为,以便专注于测试目标组件的逻辑。
-
特点:通过使用 Mock 对象,可以控制和验证组件与外部依赖之间的交互;Spring 的依赖注入机制使得在测试中能够方便地替换真实的依赖为 Mock 对象。
poi 和 poi-ooxml
-
简介:Apache POI 是一个流行的 API,用于操作 Microsoft Office 格式的文件,特别是 Excel。
poi
是其核心库,而poi-ooxml
提供了对 Office Open XML(如 .xlsx Excel 文件)的支持。 -
用途:用于读取、写入和修改 Excel 文件。这对于需要在 Java 程序中处理 Excel 数据的开发者非常有用。
-
特点:提供了丰富的 API 和功能,支持多种 Excel 文件格式;易于集成到 Java 项目中;有活跃的社区支持和维护。
opencsv 和 javacsv
-
简介:这两个库都是用于处理 CSV(逗号分隔值)文件的 Java 库。
-
用途:用于读取、写入和解析 CSV 文件。CSV 是一种常见的数据交换格式,广泛应用于各种应用中。
-
特点:提供了简单的 API 来处理 CSV 文件;支持自定义分隔符、引号字符等;易于集成和使用。
commons-io
-
简介:Apache Commons IO 是一个 Java 库,提供了对 I/O 操作的实用功能。
-
用途:用于简化文件操作、输入/输出流操作等常见的 I/O 任务。
3、java包中的文件
(1)package——>config
PageMPConfig.java
@Configuration public class PageMPConfig { @Bean public MybatisPlusInterceptor mybatisPlusInterceptor() { MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor(); interceptor.addInnerInterceptor(new PaginationInnerInterceptor(DbType.H2)); return interceptor; } }
这段Java代码是一个Spring Boot配置类,专门用于配置MyBatis Plus的分页插件。MyBatis Plus是一个增强版的MyBatis,用于简化MyBatis的使用和开发。分页插件则是MyBatis Plus提供的一个功能,可以简化数据库分页查询的操作。
@Configuration
Spring Boot的一个注解,用于标记这个类是一个配置类,Spring Boot会加载这个类中的Bean定义。
类定义:
public class PageMPConfig {
-
定义了一个名为
PageMPConfig
的公共类。
分页插件的Bean定义:
@Bean public MybatisPlusInterceptor mybatisPlusInterceptor() { MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor(); interceptor.addInnerInterceptor(new PaginationInnerInterceptor(DbType.H2)); return interceptor; }
-
@Bean
注解表示这个方法会返回一个对象,这个对象会被注册为Spring应用上下文中的一个Bean,可以被其他组件通过依赖注入的方式使用。 -
mybatisPlusInterceptor()
方法返回一个MybatisPlusInterceptor
对象,这个对象是MyBatis Plus分页插件的容器。 -
在
MybatisPlusInterceptor
对象中,通过addInnerInterceptor
方法添加了一个PaginationInnerInterceptor
对象,这是实际执行分页功能的插件。 -
PaginationInnerInterceptor
的构造函数接收一个DbType
参数,这里指定为DbType.H2
,表示这个分页插件是为H2数据库设计的。不同的数据库可能需要不同的分页策略,所以这里需要指定数据库类型。
总的来说,这个配置类的主要作用是为Spring Boot应用配置MyBatis Plus的分页插件,以便在应用中简化分页查询的操作。需要注意的是,这里指定的数据库类型是H2,如果实际使用的数据库不是H2,可能需要根据实际情况修改这个配置。
(2)package —> controller
AdminController.java
@RestController @RequestMapping("/admin") public class AdminController { @Resource private AdminService adminService; @Resource private AdminMapper adminMapper; @PostMapping("/login") public Result login(@RequestBody Admin admin){ Admin admin1=adminService.query().eq("username",admin.getUsername()).eq("password",admin.getPassword()).one(); if (admin1==null){ return Result.error().message("登录失败,用户名或密码有误"); } return Result.ok().message("登录成功").data("user", admin1); } @PostMapping("/register") public Result register(@RequestBody Admin admin){ Admin dbAdmin = adminMapper.findByUsername(admin.getUsername()); if (dbAdmin!=null){ return Result.error().message("该账号已存在"); } boolean save = adminService.save(admin); return save?Result.ok().message("注册成功"):Result.error().message("服务器异常,请稍后再试"); } }
这段代码是一个基于Spring框架的Java控制器类,用于处理管理员相关的登录和注册请求。以下是该代码的详细解释:
类定义和注解
@RestController
注解表示该类是一个RESTful Web服务的控制器,返回的数据会直接写入HTTP响应体中,通常用于返回JSON或XML格式的数据。
首先,我们需要明白HTTP请求通常包含两部分:请求头和请求体。请求头包含了关于请求的一些基本信息,比如请求的方法(GET、POST等)、请求的URL等。而请求体则包含了实际要发送给服务器的数据。
在Web开发中,当我们需要发送一些数据给服务器时,比如用户注册时填写的用户名和密码,这些数据通常会被放在HTTP请求的请求体中。
在Spring框架中,为了从HTTP请求的请求体中获取这些数据,并将其转换为Java对象,我们可以使用
@RequestBody
注解。这个注解告诉Spring:“嘿,当有请求过来时,请帮我从请求体中解析出数据,并创建一个对应的Java对象。”
当用户填写完表单并点击提交按钮时,前端会捕获这个事件,并阻止表单的默认提交行为(这通常是为了避免页面刷新)。
然后,前端会使用JavaScript构造一个POST请求,将用户名和密码作为请求体(通常是以JSON或
x-www-form-urlencoded
格式)发送到/admin/login
路径。
在你提供的代码中,
@RequestBody Admin admin
这一行就是告诉Spring:“当有请求到/admin/login
或/admin/register
时,请从请求体中解析出数据,并创建一个Admin
对象,然后把这个对象作为参数传递给login
或register
方法。”所以,当你使用例如Postman这样的工具,或者通过前端代码发送一个POST请求到
/admin/login
,并在请求体中包含了用户名和密码的JSON数据时,Spring会自动解析这个JSON数据,创建一个Admin
对象,并传递给login
方法。同样地,对于注册操作也是如此。简单来说,
@RequestBody
注解就是告诉Spring:“我要从请求体中获取数据,并转换为Java对象。”这样,你就可以在方法中直接使用这个Java对象了,而不需要手动去解析请求体中的数据。—————————————————————RequestBody的重要性————————————————————————
在你的
login
方法中,你期望通过@RequestBody
获取一个Admin
对象,其中包含用户名和密码,然后使用这个对象来查询数据库中的管理员信息。如果没有@RequestBody
,Spring会试图以其他方式(可能是请求参数或路径变量)来提供这个Admin
对象,但显然这不是你想要的。因为用户名和密码通常作为请求体的一部分发送,而不是作为URL的一部分或单独的请求参数。
@RequestMapping("/admin")
注解定义了该类中所有请求映射的基础URL路径,即所有请求都会以/admin
作为前缀。
成员变量
@Resource
注解用于注入Spring容器中的AdminService
和AdminMapper
对象。这两个对象通常用于处理与数据库相关的操作。
方法详解
-
登录 (
login
方法)
@PostMapping("/login")
注解表示这是一个处理POST请求的方法,请求的URL路径为/admin/login
。
方法接收一个Admin
对象作为参数,该对象的数据通过HTTP请求的body传递。
方法首先使用adminService
的query
方法构建一个查询条件,查找具有指定用户名和密码的管理员记录。
Admin admin=adminService.query().eq("username",admin.getUsername()).eq("password",admin.getPassword()).one();
在 MyBatis-Plus 中,
adminService.query().eq("username", admin.getUsername()).eq("password", admin.getPassword()).one();
这句代码使用了 MyBatis-Plus 的查询构造器(Query Wrapper)来构建查询条件,并执行查询以获取单个结果。
adminService.query()
adminService
是一个服务层的组件,它通常封装了对Admin
实体类的 CRUD(创建、读取、更新、删除)操作。
query()
方法通常返回一个QueryWrapper
对象,这是 MyBatis-Plus 提供的一个查询构造器,用于构建 SQL 查询条件。
.eq("username", admin.getUsername())
和.eq("password", admin.getPassword())
eq
是QueryWrapper
的一个方法,用于添加等于条件。第一个
eq
方法添加了一个条件,要求username
字段的值等于admin
对象中的username
属性值。第二个
eq
方法添加了一个条件,要求password
字段的值等于admin
对象中的password
属性值。
.one()
one()
方法是QueryWrapper
的一个方法,用于执行查询并返回单个结果。如果查询结果有多个,它会抛出异常;如果没有结果,它会返回null
。然而,需要注意的是,直接使用明文密码进行数据库查询是不安全的。在真实的应用场景中,密码应该被哈希处理并存储在数据库中,而不是以明文形式存储。在验证用户密码时,你应该对用户输入的密码进行相同的哈希处理,然后比较哈希值而不是明文密码。
如果你正在使用 MyBatis-Plus,并且你的
Admin
实体类的密码字段是哈希过的,那么你应该这样做:
在用户注册或修改密码时,对密码进行哈希处理并存储哈希值。
在用户登录时,对用户输入的密码进行相同的哈希处理。
使用哈希后的密码值来构建查询条件,而不是使用明文密码。
此外,为了安全性,你应该确保:
使用强哈希算法(如 bcrypt)。
不要在代码中硬编码任何密码或哈希值。
限制对敏感数据的访问权限。
定期更新和审查安全实践。
-
if (admin1 == null)
:这一行代码检查从数据库中查询出来的admin1
对象是否为null
。如果admin1
是null
,这意味着根据提供的用户名和密码在数据库中找不到对应的Admin
记录。 -
return Result.error().message("登录失败,用户名或密码有误");
:如果admin1
是null
,即登录失败,这行代码会执行。它创建并返回一个Result
对象,该对象表示一个错误响应。Result.error()
方法可能是一个构建器模式,它用于创建表示错误的Result
对象。接着,message("登录失败,用户名或密码有误")
方法为这个错误响应设置一个描述性的消息,告诉前端用户登录失败的原因。 -
如果找不到匹配的记录(
admin1
为null
),则返回一个错误信息表示登录失败。如果找到匹配的记录,则返回一个包含管理员信息的成功消息。
-
注册 (
register
方法)
@PostMapping("/register")
注解表示这是一个处理POST请求的方法,请求的URL路径为/admin/register
。
方法同样接收一个Admin
对象作为参数。
首先,使用adminMapper
的findByUsername
方法检查数据库中是否已经存在具有相同用户名的管理员记录。
如果已存在(dbAdmin
不为null
),则返回一个错误信息表示该账号已存在。
如果不存在,则尝试使用adminService
的save
方法保存管理员记录到数据库。
根据保存操作的结果(save
为true
或false
),返回一个成功或错误的消息。
辅助类和方法
-
Result
:这个类通常用于封装API的响应结果,可能包含状态码、消息和数据等字段。 -
AdminService
:这是一个服务层类,通常包含与数据库交互的业务逻辑。 -
AdminMapper
:这通常是一个MyBatis的Mapper接口,用于映射数据库操作到具体的SQL语句。
总结
这个AdminController
类为管理员提供了登录和注册的RESTful接口。通过这两个接口,用户可以发送HTTP请求到服务器,服务器会处理请求并返回相应的响应。
(3)package —> entity
package com.zl.entity; import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.mybatisplus.annotation.TableId; import java.io.Serializable; import io.swagger.annotations.ApiModel; import io.swagger.annotations.ApiModelProperty; import lombok.Data; import lombok.EqualsAndHashCode; @Data @EqualsAndHashCode(callSuper = false) @ApiModel(value="Admin对象", description="") public class Admin implements Serializable { private static final long serialVersionUID = 1L; @TableId(value = "id", type = IdType.AUTO) private Integer id; private String username; private String password; }
这是一个Java类定义,具体为一个名为Admin
的类,它代表了一个管理员对象。这个类使用了多个注解来定义其行为和属性。下面我会逐一解释这些注解和字段:
-
com.baomidou.mybatisplus.annotation.IdType
和com.baomidou.mybatisplus.annotation.TableId
: 这些是MyBatis-Plus框架的注解,用于处理与数据库表主键相关的操作。 -
java.io.Serializable
: 表示这个类可以被序列化,以便在网络传输或文件存储时使用。 -
io.swagger.annotations.ApiModel
和io.swagger.annotations.ApiModelProperty
: 这些是Swagger框架的注解,用于生成API文档。 -
lombok.Data
和lombok.EqualsAndHashCode
: Lombok库的注解,用于自动生成getter、setter、equals()
、hashCode()
和toString()
方法。
-
@Data:
-
这个注解是Lombok库提供的,用于自动生成getter、setter、equals()、hashCode()和toString()方法。这使得你不需要手动编写这些常用的方法,代码更加简洁。
-
-
@EqualsAndHashCode(callSuper = false):
-
这也是Lombok库提供的注解,用于生成
equals()
和hashCode()
方法。callSuper = false
意味着在生成这些方法时不会调用超类的(父类的)相应方法。
-
-
@ApiModel(value="Admin对象", description=""):
-
这个注解是Swagger框架使用的,用于API文档生成。
value
属性为这个模型对象提供了一个名称(这里是"Admin对象"),而description
属性则提供了描述(这里为空)。
-
-
public class Admin implements Serializable:
-
这定义了一个公共类
Admin
,并且实现了Serializable
接口。实现这个接口意味着这个类的对象可以被序列化,这样它们就可以被转换成字节流,用于网络传输或保存到文件等。
-
-
private static final long serialVersionUID = 1L;:
-
这是一个序列化ID,用于在反序列化时确保类的版本一致性。当类的结构发生变化时,这个ID通常也会变化,以确保旧的对象实例不再与新版本的类兼容。
-
-
@TableId(value = "id", type = IdType.AUTO):
-
这个注解通常与ORM框架(如MyBatis-Plus)一起使用,表示
id
字段是数据库表的主键。value = "id"
表示数据库中的列名为id
,而type = IdType.AUTO
表示这个主键是自动增长的。
-
-
private Integer id;:
-
这是一个私有字段,代表管理员的唯一标识符。
-
-
private String username;:
-
这是一个私有字段,代表管理员的用户名。
-
-
private String password;:
-
这是一个私有字段,代表管理员的密码。注意:在实际应用中,密码通常不会直接以明文形式存储,而是会存储其哈希值或加密后的值。
-
这个类定义了一个简单的管理员对象,包含了ID、用户名和密码三个字段。通过使用Lombok和Swagger的注解,代码变得简洁且易于理解,同时也为API文档生成提供了便利。
(4)package ——>mapper
这个AdminMapper
接口是MyBatis框架中的一个关键部分,用于定义与数据库交互的SQL语句。这个接口扩展了BaseMapper<Admin>
,意味着它继承了BaseMapper
接口中定义的所有方法,这些方法通常包括基本的CRUD(创建、读取、更新、删除)操作。
以下是对这个接口的通俗易懂的讲解:
包名和导入
-
package com.zl.mapper;
:这个接口位于com.zl.mapper
包中。 -
导入的类和接口是用于支持MyBatis操作和定义Admin实体类的。
接口注解
-
@Mapper
:这个注解告诉MyBatis这个接口是一个Mapper接口,即它包含了用于与数据库交互的SQL语句。
接口声明
-
public interface AdminMapper extends BaseMapper<Admin>
:这个接口被声明为public
,意味着它可以从其他包中访问。它还扩展了BaseMapper<Admin>
,这意味着这个接口继承了BaseMapper
中所有为Admin
类型定义的方法。
自定义方法
-
findByUsername(String username)
:这是一个自定义方法,用于通过用户名从数据库中查找管理员信息。 -
@Select("select * from admin where username=#{username}")
:这个注解定义了执行findByUsername
方法时要使用的SQL语句。select * from admin where username=#{username}
是一个简单的SQL查询语句,它从admin
表中选择所有列,但只选择那些username
列值等于方法参数username
的行。#{username}
是一个占位符,它会被MyBatis替换为实际传入的参数值。
总结
这个AdminMapper
接口定义了如何从数据库中查询管理员信息,特别是根据用户名来查询。它继承了BaseMapper
中的基本方法,并添加了一个自定义的findByUsername
方法来满足特定的查询需求。通过MyBatis的配置和映射,这个接口可以与实际的数据库操作关联起来,使得Java代码可以方便地执行数据库查询操作。
该段代码是一个 JavaScript 脚本,用于处理用户点击登录按钮时的逻辑。以下是这段代码的详细解释:
-
定义函数:
function loginBtn(){
定义了一个名为 loginBtn
的函数。这个函数可能是在某个登录按钮的点击事件中被调用的。
-
表单数据转换为 JSON:
let add = $("#loginFrom").formToJson();
这里使用了 jQuery 的选择器 $("#loginFrom")
来选择页面上的某个元素(很可能是一个表单),并调用 formToJson
方法将表单中的数据转换为 JSON 格式。假设 formToJson
是一个已经定义好的函数或者插件方法,因为它不是 jQuery 的内置方法。
-
控制台输出:
console.log(add)
将转换后的 JSON 数据输出到浏览器的控制台,方便开发者调试。
-
发起 AJAX 请求:
$.ajax({
使用 jQuery 的 ajax
方法发起一个异步请求。
-
请求配置:
-
url :'/admin/login',
:请求的 URL 是/admin/login
。 -
type: 'post',
:请求的方式是 POST。 -
contentType:'application/json',
:设置请求的内容类型为 JSON。 -
data : add,
:请求的数据是之前转换得到的 JSON 数据。
-
-
成功回调:
javascript复制代码 success : function (data) {
如果请求成功,会执行这个回调函数。
-
if (data.code===20000){
:检查返回的数据中code
字段是否为20000
,这通常代表请求成功。-
localStorage.setItem("user",JSON.stringify(data.data.user))
:如果成功,将返回的用户信息存储到本地存储(localStorage)中。 -
location.href='admin/index.html'
:跳转到管理员主页。
-
-
}else {
:如果code
不是20000
。-
layer.msg(data.message);
:使用layer
(可能是一个前端库或插件)显示返回的错误消息。
-
-
错误处理:
javascript复制代码 catch: function (e){
这里使用 catch
来处理错误,但需要注意的是,catch
并不是 $.ajax
的一个标准配置项。通常,我们会使用 error
回调来处理错误。这里的 catch
可能是一个错误或该代码片段的特定实现方式。
复制代码 * `console.log(e)`:在控制台输出错误信息。
-
返回 false:
javascript复制代码 return false;
如果这个函数是在一个表单的提交事件中调用的,返回 false
会阻止表单的默认提交行为,确保只执行 AJAX 请求。
注意:
-
这段代码依赖于 jQuery 和可能的
formToJson
方法或插件,以及layer
这个库或插件,因此确保这些依赖已经被正确加载。 -
catch
应该是error
的一个错误,应该更正为error
。 -
$("#loginFrom")
中的From
可能是Form
的拼写错误,应该检查并修正。
# 假设 CN_NUM 和 CN_UNIT 字典已经定义,分别包含中文数字和单位的映射 # 假设 decimal 是一个包含小数部分的中文数字的列表 # 开始处理整数部分 while integer: # 当 integer 列表还有元素时 x = integer.pop() # 弹出列表的最后一个元素,即中文数字的最后一个字符 if x in CN_UNIT: # 如果该字符是单位 unit = CN_UNIT.get(x) # 获取该单位对应的数值 # 根据不同的单位,给 parse 列表添加相应的标记,并重置 unit if unit == 10000: parse.append('w') # 'w' 代表万位 unit = 1 # 重置 unit,因为已经处理了一个单位 elif unit == 100000000: parse.append('y') # 'y' 代表亿位 unit = 1 elif unit == 1000000000000: # 兆位 parse.append('z') unit = 1 continue # 跳过当前循环的剩余部分,继续下一次迭代 else: # 如果该字符是数字 dig = CN_NUM.get(x) # 获取该数字对应的阿拉伯数字 # 如果已经累积了单位(比如前面有一个单位,但后面直接跟了一个数字),则需要将这个数字乘以该单位 if unit: dig = dig * unit unit = 0 # 重置 unit,因为已经使用了它 # 将这个数字添加到 parse 列表中 parse.append(dig) # 检查是否还有未处理的单位(比如整数部分以单位结尾,如“十”) if unit == 10: # 这里似乎有些问题,通常不会直接以十为单位结束,可能是特殊情况 parse.append(10) # 将 parse 列表中的数字和单位标记转换为阿拉伯数字 result = 0 tmp = 0 while parse: x = parse.pop() if x == 'w': # 如果是万位标记 tmp *= 10000 # 将之前累积的数字乘以 10000 result += tmp # 累加到结果中 tmp = 0 # 重置 tmp elif x == 'y': # 如果是亿位标记 tmp *= 100000000 result += tmp tmp = 0 elif x == 'z': # 如果是兆位标记 tmp *= 1000000000000 result += tmp tmp = 0 else: # 如果不是单位标记,则直接加到 tmp 中 tmp += x # 不要忘了最后还可能剩余一个未处理的数字 result += tmp # 开始处理小数部分(如果提供了 decimal) if decimal: unit = 0.1 # 初始化小数部分的单位 getcontext().prec = len(decimal) # 设置小数精度(如果使用了 Decimal 类型) # 注意:这里先将结果转换为 float 再转换为 Decimal 可能会导致精度损失 # 更好的做法是直接使用 Decimal 进行运算 result = Decimal(float(result)) tmp = Decimal(0) # 初始化小数部分的临时变量 for x in decimal: dig = CN_NUM.get(x) # 获取小数部分的数字 tmp += Decimal(str(dig)) * Decimal(str(unit)) # 累加小数部分 unit *= 0.1 # 更新小数部分的单位 # 设置完整的精度(整数部分和小数部分的总长度) getcontext().prec = len(result.to_eng_string()) + len(decimal) # 将小数部分加到结果中 result += tmp # 返回最终结果 return result # 说明Series的extract方法支持使用正则表达式进行匹配和抽取,并且返回的值是字符串类型 '''Series的extract支持正则匹配抽取,返回的值是字符串''' # 处理房屋户型列,使用正则表达式提取室、厅、厨、卫的数量 # 正则表达式(\d+)室(\d+)厅(\d+)厨(\d+)卫会匹配形如“X室Y厅Z厨W卫”的字符串,并捕获X, Y, Z, W # 提取到的数据会被放到新的列'室', '厅', '厨', '卫'中 # 处理房屋户型 data[['室', '厅', '厨', '卫']] = data['房屋户型'].str.extract(r'(\d+)室(\d+)厅(\d+)厨(\d+)卫') data['室'] = data['室'].astype(float) data['厅'] = data['厅'].astype(float) data['厨'] = data['厨'].astype(float) data['卫'] = data['卫'].astype(float) del data['房屋户型'] data.dropna(inplace=True) list1 = [] for i in data['梯户比例']: i = str(chinese2digit(i.split('梯')[0])) + \ '梯' + str(chinese2digit(i.split('梯')[1][:-1])) + '户' list1.append(i) data['梯户比例'] = list1 data[['梯', '户']] = data['梯户比例'].str.extract(r'(\d+)梯(\d+)户') data['梯'] = data['梯'].astype(float) data['户'] = data['户'].astype(float) del data['梯户比例']
尊敬的HR:
您好!
首先,非常感谢您给我提供这一宝贵的工作机会。在面试过程中,我深受公司文化和团队精神的感染,也对您所描述的职位职责和未来发展前景充满期待。
然而,经过深思熟虑和与家人、朋友的讨论,我最终决定暂时不接受这个offer。这个决定并非轻率之举,而是基于我个人的职业规划、家庭因素以及对未来发展的考量。我深知这个机会的难得和珍贵,因此我在做出这个决定时倍感纠结和不舍。
我衷心祝愿贵公司在未来的发展中取得更加辉煌的成就,也期待未来有机会与您再次合作。如果可能的话,我希望能够保持与您的联系,以便在将来有合适的机会时再次考虑加入贵公司。
再次感谢您的理解和支持。祝您工作顺利,生活愉快!
可能会问到的问题
你这个模型是怎么训练的?
系统处理流程
基于您提供的新信息,您的房价预测系统使用了MyBatis-Plus作为ORM框架,并且admin
文件夹中包含了HTML文件,这些可能是用于后台管理界面的模板。以下是对您项目结构的重新分析:
技术框架和技术栈
-
Java相关:
-
Spring Boot: 用于创建独立的、生产级别的Spring应用。
-
MyBatis-Plus: 一个MyBatis的增强工具,简化了 CRUD 操作,提升了开发效率。
-
Thymeleaf 或 JSP: 考虑到
admin
文件夹中的HTML文件,项目可能使用了Thymeleaf或JSP作为模板引擎。
-
-
Python相关:
-
机器学习库: 如scikit-learn、tensorflow等,用于创建和运行机器学习模型。
-
-
前端技术:
-
HTML/CSS: 用于创建用户界面。
-
JavaScript: 用于实现前端的交互逻辑。
-
Layui: 用于前端页面的UI设计和组件。
-
-
其他工具和库:
-
ConstantPropertiesUtil, Converter, ForecastUtil, PatternUtil: 这些工具类可能用于配置管理、数据转换、预测逻辑和模式匹配等。
-
项目结构
-
Java部分:
-
Controller: 包含
AdminController
和ForecastController
,处理用户请求和响应。 -
Entity: 包含
Admin
和Forecast
等实体类,对应数据库中的表。 -
Service: 包含业务逻辑的接口和实现类,如
AdminService
和ForecastService
。 -
Mapper: 包含MyBatis-Plus的映射接口和XML配置文件,如
ForecastMapper
。
-
-
Python部分:
-
model_predict.py
: 用于执行模型预测的Python脚本。 -
test.py
: 用于测试或验证模型性能的脚本。
-
-
资源文件:
-
static
: 存放前端静态资源,如CSS、JavaScript文件等。 -
resources
: 存放配置文件和静态资源。
-
行文逻辑和流程
-
用户界面:
-
用户通过HTML页面进行登录和注册,这些页面可能由Thymeleaf或JSP渲染。
-
-
后端处理:
-
用户的请求首先到达Java的
AdminController
或ForecastController
。 -
控制器处理请求后,调用
Service
层的业务逻辑。 -
Service
层可能需要调用Mapper
层来执行数据库操作或调用Python脚本进行预测。
-
-
预测逻辑:
-
model_predict.py
使用训练好的模型(model2.pkl
)对输入数据进行预测。 -
预测结果通过
Service
层返回给前端。
-
-
前端展示:
-
前端使用Layui框架展示预测结果。
-
总结
您的房价预测系统是一个结合了Java后端服务和Python机器学习模型的系统。它使用了Spring Boot和MyBatis-Plus作为后端的主要技术栈,同时使用Python进行机器学习模型的训练和预测。前端使用了HTML、CSS、JavaScript和Layui框架,提供了用户交互界面。项目结构清晰,分工明确,便于开发和维护。
pom文件分析
您的 pom.xml
文件定义了您的项目依赖、构建配置以及一些基本属性。以下是对您提供的 pom.xml
文件内容的分析:
项目基本信息
-
模型版本:
4.0.0
-
打包方式:
war
(Web Application Archive) -
父项目: 使用 Spring Boot 的
spring-boot-starter-parent
作为父项目,版本为2.2.5.RELEASE
。
项目坐标
-
groupId:
com.zl
-
artifactId:
pro
-
版本:
0.0.1-SNAPSHOT
属性
-
Java版本:
1.8
依赖管理
您的项目包含了多个依赖,这些依赖用于不同的功能:
-
MySQL驱动:
mysql-connector-java
-
Spring Boot 核心启动器:
spring-boot-starter
-
Spring Boot Web 启动器:
spring-boot-starter-web
,用于网络应用开发。 -
MyBatis-Plus 启动器:
mybatis-plus-boot-starter
,提供 ORM 功能和增强。 -
MyBatis-Plus 代码生成器:
mybatis-plus-generator
和velocity-engine-core
,用于生成实体类和 Mapper 类。 -
Swagger2:
springfox-swagger2
和springfox-swagger-ui
,用于API文档生成。 -
测试相关:
spring-boot-starter-test
和junit
,用于编写和执行测试。 -
Lombok:
lombok
,用于减少样板代码。 -
阿里云OSS SDK:
aliyun-sdk-oss
,用于与阿里云对象存储服务交互。 -
其他工具类库: 日期时间工具
joda-time
,Excel处理poi
和poi-ooxml
,CSV处理opencsv
和javacsv
,IO工具commons-io
,HTTP客户端httpclient
和httpcore
。
构建配置
-
Spring Boot Maven 插件:
spring-boot-maven-plugin
,版本2.6.3
,用于打包和运行 Spring Boot 应用。 -
资源文件: 配置了
src/main/webapp
目录作为资源文件目录,并将这些资源文件输出到META-INF/resources
目录下。
问题和注意事项
此外,您的项目使用了 war
打包方式,这通常用于传统的 Web 应用服务器,而 Spring Boot 通常使用 jar
打包方式,可以直接运行,无需部署到应用服务器上。
最后,您的项目定义了 properties
标签内的 Java 版本为 1.8
,请确保您的开发环境与此相匹配,或者根据需要调整版本号以使用更新的 Java 功能。
如何在Java中调用python模型
-
集成需求说明:
-
解释您的项目需要一个机器学习模型来预测房价,而您选择了 Python 作为实现模型的语言,因为它拥有丰富的数据科学库如 scikit-learn、pandas 等。
-
-
模型开发:
-
描述您是如何在 Python 中开发和训练机器学习模型的。提到您保存了训练好的模型,例如使用
pickle
或joblib
库将模型保存为文件(如model2.pkl
)。
-
-
模型调用:
-
阐述在 Java 应用中,您创建了一个
PythonCaller
工具类,该类负责调用 Python 脚本。解释您如何使用 Java 的Runtime.exec
方法来执行 Python 解释器,并传递 Python 脚本及其参数。
-
-
参数传递:
-
说明您如何准备和传递房屋特征数据到 Python 脚本。这可能包括数据清洗、格式化和转换为字符串数组。
-
-
执行 Python 脚本:
-
描述您如何构造命令行参数,包括 Python 解释器的路径、脚本文件的路径和房屋特征数据。
-
-
读取结果:
-
解释您如何使用
BufferedReader
从 Python 脚本的标准输出中读取预测结果。提到您如何解析这些输出,将字符串转换为可以被 Java 应用使用的数值类型(如double
)。
-
-
异常处理:
-
讨论您如何捕获和处理可能发生的异常,例如
IOException
或InterruptedException
。
-
-
安全性和优化:
-
如果适用,提及您如何确保传递给外部进程的参数是安全的,以及您对未来可能的优化工作的考虑。
-
-
测试和验证:
-
说明您如何测试
PythonCaller
类以验证其按预期工作,并且能够正确地与 Python 脚本交互并返回预测结果。
-
-
总结:
-
总结整个调用过程,并强调这种集成如何使您能够利用 Python 在数据科学领域的优势,同时在 Java 应用中实现业务逻辑和用户界面。
-
确保您的解释清晰、准确,并且能够展示您对整个过程的深入理解。准备一些关键点以供讨论,并准备好回答老师可能提出的进一步问题。