SQL常见窗口函数使用


前言

聚合函数一般是将数值集进行操作,通常与GROUP BY子句一起使用以将值分组为子集。大多数聚合函数也可以用作窗口函数,具体可以参考MySQL官方文档:聚合函数

窗口函数对一组查询行执行类似聚合的操作。但是,尽管聚合操作将查询行分组为单个结果行,但是窗口函数为每个查询行生成结果,详细内容请参考MySQL官方文档:窗口函数


一、窗口函数是什么?

在这里插入图片描述

窗口函数,也叫OLAP函数(Online Anallytical Processing,联机分析处理),可以对数据库数据进行实时分析处理。

简单来说,窗口函数有以下功能:
1)同时具有分组和排序的功能
2)不减少原表的行数

窗口函数的基本语法如下:

函数名 OVER 子句
<窗口函数> OVER (PARTITION BY <用于分组的列名>
                order by <用于排序的列名>)

over关键字用来指定函数执行的窗口范围,若后面括号中什么都不写,则意味着窗口包含满足WHERE条件的所有行,窗口函数基于所有行进行计算;如果不为空,则支持以下4中语法来设置窗口。

window_name:给窗口指定一个别名。如果SQL中涉及的窗口较多,采用别名可以看起来更清晰易读;
PARTITION BY子句:窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行;
ORDER BY子句 :按照哪些字段进行排序,窗口函数将按照排序后的记录顺序进行编号;
FRAME子句:FRAME是当前分区的一个子集,子句用来定义子集的规则,通常用来作为滑动窗口使用。

给窗口指定别名:WINDOW w AS (PARTITION BY stu_id ORDER BY score)

mysql> SELECT
    -> RANK() OVER w AS rk,
    -> PERCENT_RANK() OVER w AS prk,
    -> stu_id, lesson_id, score
    -> FROM t_score
    -> WHERE stu_id = 1
    -> WINDOW w AS (PARTITION BY stu_id ORDER BY score)
    -> ;
+----+------+--------+-----------+-------+
| rk | prk  | stu_id | lesson_id | score |
+----+------+--------+-----------+-------+
|  1 |    0 |      1 | L003      |    79 |
|  2 | 0.25 |      1 | L002      |    86 |
|  3 |  0.5 |      1 | L004      |    88 |
|  4 | 0.75 |      1 | L005      |    98 |
|  4 | 0.75 |      1 | L001      |    98 |
+----+------+--------+-----------+-------+

<窗口函数>的位置,可以放以下两种函数:

1) 专用窗口函数,包括后面要讲到的rank, dense_rank, row_number等专用窗口函数。
2) 聚合函数,如sum. avg, count, max, min

因为窗口函数是对where或者group by子句处理后的结果进行操作,所以窗口函数原则上只能写在select子句中

窗口函数具备了我们之前学过的group by子句分组的功能和order by子句排序的功能。那么,为什么还要用窗口函数呢?
这是因为,group by分组汇总后改变了表的行数,一行只有一个类别。而partiition by和rank函数不会减少原表中的行数

在这里插入图片描述
回归正题,那为什么叫“窗口”函数呢?
这是因为partition by分组后的结果称为“窗口”,这里的窗口不是我们家里的门窗,而是表示“范围”的意思

注意事项:partition子句可以省略,省略就是不指定分组,结果如下,只是按成绩由高到低进行了排序:

select *,
   rank() over (order by 成绩 desc) as ranking
from 班级表

结果如下
在这里插入图片描述
这就失去了窗口函数的功能,所以一般不要这么使用。

二、窗口函数的作用

在日常工作中,经常会遇到需要在每组内排名,比如下面的业务需求:

排名问题:每个部门按业绩来排名
topN问题:找出每个部门排名前N的员工

面对这类需求,就可以使用sql的高级功能窗口函数了

三、使用方法

1、排序函数rank(),dense_rank(),row_number()

a、rank()

例如下图,是班级表中的内容
在这里插入图片描述
如果我们想在每个班级内按成绩排名,得到下面的结果:
在这里插入图片描述
SQL语句实现:

select *,
   rank() over (partition by 班级
                 order by 成绩 desc) as ranking
from 班级表

首先来解释下这个sql语句里的select子句。rank是排序的函数。要求是“每个班级内按成绩排名”,这句话可以分为两部分:

1)每个班级内:按班级分组
partition by用来对表分组。在这个例子中,所以我们指定了按“班级”分组(partition by 班级)

2)按成绩排名
order by子句的功能是对分组后的结果进行排序,默认是按照升序(asc)排列。在本例中(order by 成绩 desc)是按成绩这一列排序,加了desc关键词表示降序排列。

通过下图,我们就可以理解partiition by(分组)和order by(在组内排序)的作用了。
在这里插入图片描述

b、rank(), dense_rank(), row_number()有什么区别呢?

下面通过代码看下结果就一目了然了:

select *,
   rank() over (order by 成绩 desc) as ranking,
   dense_rank() over (order by 成绩 desc) as dese_rank,
   row_number() over (order by 成绩 desc) as row_num
from 班级表

结果:
在这里插入图片描述
三个函数区别如下:

rank函数:这个例子中是5位,5位,5位,8位,也就是如果有并列名次的行,会占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,4。

dense_rank函数:这个例子中是5位,5位,5位,6位,也就是如果有并列名次的行,不占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,2。

row_number函数:这个例子中是5位,6位,7位,8位,也就是不考虑并列名次的情况。比如前3名是并列的名次,排名是正常的1,2,3,4。

在这里插入图片描述
最后,需要强调的一点是:在上述的这三个专用窗口函数中,函数后面的括号不需要任何参数,保持()空着就可以。

2、分布函数:PERCENT_RANK()、CUME_DIST()

a、PERCENT_RANK()

  • 用途:每行按照公式(rank-1) / (rows-1)进行计算。其中,rank为RANK()函数产生的序号,rows为当前窗口的记录总行数
  • 应用场景:不常用
    代码如下:
mysql> SELECT
    -> RANK() OVER w AS rk,
    -> PERCENT_RANK() OVER w AS prk,
    -> stu_id, lesson_id, score
    -> FROM t_score
    -> WHERE stu_id = 1
    -> WINDOW w AS (PARTITION BY stu_id ORDER BY score)
    -> ;
+----+------+--------+-----------+-------+
| rk | prk  | stu_id | lesson_id | score |
+----+------+--------+-----------+-------+
|  1 |    0 |      1 | L003      |    79 |
|  2 | 0.25 |      1 | L002      |    86 |
|  3 |  0.5 |      1 | L004      |    88 |
|  4 | 0.75 |      1 | L005      |    98 |
|  4 | 0.75 |      1 | L001      |    98 |
+----+------+--------+-----------+-------+

b、CUME_DIST()

  • 用途:分组内小于、等于当前rank值的行数 / 分组内总行数
  • 应用场景:查询小于等于当前成绩(score)的比例
cd1:没有分区,则所有数据均为一组,总行数为8
cd2:按照lesson_id分成了两组,行数各为4

mysql> SELECT stu_id, lesson_id, score,
    -> CUME_DIST() OVER (ORDER BY score) AS cd1,
    -> CUME_DIST() OVER (PARTITION BY lesson_id ORDER BY score) AS cd2
    -> FROM t_score
    -> WHERE lesson_id IN ('L001','L002')
    -> ;
+--------+-----------+-------+-------+------+
| stu_id | lesson_id | score | cd1   | cd2  |
+--------+-----------+-------+-------+------+
|      2 | L001      |    84 | 0.125 | 0.25 |
|      1 | L001      |    98 |  0.75 |  0.5 |
|      4 | L001      |    99 | 0.875 | 0.75 |
|      3 | L001      |   100 |     1 |    1 |
|      1 | L002      |    86 |  0.25 | 0.25 |
|      4 | L002      |    88 | 0.375 |  0.5 |
|      2 | L002      |    90 |   0.5 | 0.75 |
|      3 | L002      |    91 | 0.625 |    1 |
+--------+-----------+-------+-------+------+

3、前后函数:LAG(expr,n)、LEAD(expr,n)

  • 用途:返回位于当前行的前n行(LAG(expr,n))或后n行(LEAD(expr,n))的expr的值
  • 应用场景:查询前1名同学的成绩和当前同学成绩的差值

内层SQL先通过LAG()函数得到前1名同学的成绩,外层SQL再将当前同学和前1名同学的成绩做差得到成绩差值diff。


内层SQL先通过LAG()函数得到前1名同学的成绩,
外层SQL再将当前同学和前1名同学的成绩做差得到成绩差值diff。


mysql> SELECT stu_id, lesson_id, score, pre_score,
    -> score-pre_score AS diff
    -> FROM(
    ->     SELECT stu_id, lesson_id, score,
    ->     LAG(score,1) OVER w AS pre_score
    ->     FROM t_score
    ->     WHERE lesson_id IN ('L001','L002')
    ->     WINDOW w AS (PARTITION BY lesson_id ORDER BY score)) t
    -> ;
+--------+-----------+-------+-----------+------+
| stu_id | lesson_id | score | pre_score | diff |
+--------+-----------+-------+-----------+------+
|      2 | L001      |    84 |      NULL | NULL |
|      1 | L001      |    98 |        84 |   14 |
|      4 | L001      |    99 |        98 |    1 |
|      3 | L001      |   100 |        99 |    1 |
|      1 | L002      |    86 |      NULL | NULL |
|      4 | L002      |    88 |        86 |    2 |
|      2 | L002      |    90 |        88 |    2 |
|      3 | L002      |    91 |        90 |    1 |
+--------+-----------+-------+-----------+------+

4、头尾函数:FIRST_VALUE(expr)、LAST_VALUE(expr)

  • 用途:返回第一个(FIRST_VALUE(expr))或最后一个(LAST_VALUE(expr))expr的值
  • 应用场景:截止到当前成绩,按照日期排序查询第1个和最后1个同学的分数
添加新列:
mysql> ALTER TABLE t_score ADD create_time DATE;

mysql> SELECT stu_id, lesson_id, score, create_time,
    -> FIRST_VALUE(score) OVER w AS first_score,
    -> LAST_VALUE(score) OVER w AS last_score
    -> FROM t_score
    -> WHERE lesson_id IN ('L001','L002')
    -> WINDOW w AS (PARTITION BY lesson_id ORDER BY create_time)
    -> ;
+--------+-----------+-------+-------------+-------------+------------+
| stu_id | lesson_id | score | create_time | first_score | last_score |
+--------+-----------+-------+-------------+-------------+------------+
|      3 | L001      |   100 | 2018-08-07  |         100 |        100 |
|      1 | L001      |    98 | 2018-08-08  |         100 |         98 |
|      2 | L001      |    84 | 2018-08-09  |         100 |         99 |
|      4 | L001      |    99 | 2018-08-09  |         100 |         99 |
|      3 | L002      |    91 | 2018-08-07  |          91 |         91 |
|      1 | L002      |    86 | 2018-08-08  |          91 |         86 |
|      2 | L002      |    90 | 2018-08-09  |          91 |         90 |
|      4 | L002      |    88 | 2018-08-10  |          91 |         88 |
+--------+-----------+-------+-------------+-------------+------------+

5、其它函数:NTH_VALUE(expr, n)、NTILE(n)

a、NTH_VALUE(expr,n)

  • 用途:返回窗口中第n个expr的值。expr可以是表达式,也可以是列名
  • 应用场景:截止到当前成绩,显示每个同学的成绩中排名第2和第3的成绩的分数
mysql> SELECT stu_id, lesson_id, score,
    -> NTH_VALUE(score,2) OVER w AS second_score,
    -> NTH_VALUE(score,3) OVER w AS third_score
    -> FROM t_score
    -> WHERE stu_id IN (1,2)
    -> WINDOW w AS (PARTITION BY stu_id ORDER BY score)
    -> ;
+--------+-----------+-------+--------------+-------------+
| stu_id | lesson_id | score | second_score | third_score |
+--------+-----------+-------+--------------+-------------+
|      1 | L003      |    79 |         NULL |        NULL |
|      1 | L002      |    86 |           86 |        NULL |
|      1 | L004      |    88 |           86 |          88 |
|      1 | L001      |    98 |           86 |          88 |
|      1 | L005      |    98 |           86 |          88 |
|      2 | L004      |    75 |         NULL |        NULL |
|      2 | L005      |    77 |           77 |        NULL |
|      2 | L001      |    84 |           77 |          84 |
|      2 | L003      |    86 |           77 |          84 |
|      2 | L002      |    90 |           77 |          84 |
+--------+-----------+-------+--------------+-------------+

b、NTILE(n)

NTILE(n)函数在数据分析中应用较多,比如由于数据量大,需要将数据平均分配到n个并行的进程分别计算,此时就可以用NTILE(n)对数据进行分组(由于记录数不一定被n整除,所以数据不一定完全平均),然后将不同桶号的数据再分配。

  • 用途:将分区中的有序数据分为n个等级,记录等级数
  • 应用场景:将每门课程按照成绩分成3组
mysql> SELECT
    -> NTILE(3) OVER w AS nf,
    -> stu_id, lesson_id, score
    -> FROM t_score
    -> WHERE lesson_id IN ('L001','L002')
    -> WINDOW w AS (PARTITION BY lesson_id ORDER BY score)
    -> ;
+------+--------+-----------+-------+
| nf   | stu_id | lesson_id | score |
+------+--------+-----------+-------+
|    1 |      2 | L001      |    84 |
|    1 |      1 | L001      |    98 |
|    2 |      4 | L001      |    99 |
|    3 |      3 | L001      |   100 |
|    1 |      1 | L002      |    86 |
|    1 |      4 | L002      |    88 |
|    2 |      2 | L002      |    90 |
|    3 |      3 | L002      |    91 |
+------+--------+-----------+-------+

四、使用聚合函数作为窗口函数

聚和窗口函数和上面提到的专用窗口函数用法完全相同,只需要把聚合函数写在窗口函数的位置即可,但是函数后面括号里面不能为空,需要指定聚合的列名

select *,
   sum(成绩) over (order by 学号) as current_sum,
   avg(成绩) over (order by 学号) as current_avg,
   count(成绩) over (order by 学号) as current_count,
   max(成绩) over (order by 学号) as current_max,
   min(成绩) over (order by 学号) as current_min
from 班级表

结果如下:
在这里插入图片描述
你发现其中的规律没有:

如上图,以sum举例, 聚合函数sum在窗口函数中,是对自身记录、及位于自身记录以上的数据进行求和的结果

比如0004号,在使用sum窗口函数后的结果,是对0001,0002,0003,0004号的成绩求和,若是0005号,则结果是0001号~0005号成绩的求和,以此类推。

比如0005号后面的聚合窗口函数结果是:学号0001~0005五人成绩的总和、平均、计数及最大最小值。

如果想要知道所有人成绩的总和、平均等聚合结果,看最后一行即可。

这样使用窗口函数的作用是什么呢?
聚合函数作为窗口函数,可以在每一行的数据里直观的看到,截止到本行数据,统计数据是多少(最大值、最小值等)。同时可以看出每一行数据,对整体统计数据的影响。

五、总结

1、同时具有分组(partition by)和排序(order by)的功能
2、不减少原表的行数,所以经常用来在每组内排名

1、窗口函数原则上只能写在select子句中

使用场景
业务需求“在每组内排名”,比如:
排名问题:每个部门按业绩来排名
topN问题:找出每个部门排名前N的员工进行奖励

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值