前言
聚合函数一般是将数值集进行操作,通常与GROUP BY子句一起使用以将值分组为子集。大多数聚合函数也可以用作窗口函数,具体可以参考MySQL官方文档:聚合函数
窗口函数对一组查询行执行类似聚合的操作。但是,尽管聚合操作将查询行分组为单个结果行,但是窗口函数为每个查询行生成结果,详细内容请参考MySQL官方文档:窗口函数
一、窗口函数是什么?
窗口函数,也叫OLAP函数(Online Anallytical Processing,联机分析处理),可以对数据库数据进行实时分析处理。
简单来说,窗口函数有以下功能:
1)同时具有分组和排序的功能
2)不减少原表的行数
窗口函数的基本语法如下:
函数名 OVER 子句
<窗口函数> OVER (PARTITION BY <用于分组的列名>
order by <用于排序的列名>)
over关键字用来指定函数执行的窗口范围,若后面括号中什么都不写,则意味着窗口包含满足WHERE条件的所有行,窗口函数基于所有行进行计算;如果不为空,则支持以下4中语法来设置窗口。
①window_name:给窗口指定一个别名。如果SQL中涉及的窗口较多,采用别名可以看起来更清晰易读;
②PARTITION BY子句:窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行;
③ ORDER BY子句 :按照哪些字段进行排序,窗口函数将按照排序后的记录顺序进行编号;
④FRAME子句:FRAME是当前分区的一个子集,子句用来定义子集的规则,通常用来作为滑动窗口使用。
给窗口指定别名:WINDOW w AS (PARTITION BY stu_id ORDER BY score)
mysql> SELECT
-> RANK() OVER w AS rk,
-> PERCENT_RANK() OVER w AS prk,
-> stu_id, lesson_id, score
-> FROM t_score
-> WHERE stu_id = 1
-> WINDOW w AS (PARTITION BY stu_id ORDER BY score)
-> ;
+----+------+--------+-----------+-------+
| rk | prk | stu_id | lesson_id | score |
+----+------+--------+-----------+-------+
| 1 | 0 | 1 | L003 | 79 |
| 2 | 0.25 | 1 | L002 | 86 |
| 3 | 0.5 | 1 | L004 | 88 |
| 4 | 0.75 | 1 | L005 | 98 |
| 4 | 0.75 | 1 | L001 | 98 |
+----+------+--------+-----------+-------+
<窗口函数>的位置,可以放以下两种函数:
1) 专用窗口函数,包括后面要讲到的rank, dense_rank, row_number等专用窗口函数。
2) 聚合函数,如sum. avg, count, max, min等
因为窗口函数是对where或者group by子句处理后的结果进行操作,所以窗口函数原则上只能写在select子句中。
窗口函数具备了我们之前学过的group by子句分组的功能和order by子句排序的功能。那么,为什么还要用窗口函数呢?
这是因为,group by分组汇总后改变了表的行数,一行只有一个类别。而partiition by和rank函数不会减少原表中的行数。
回归正题,那为什么叫“窗口”函数呢?
这是因为partition by分组后的结果称为“窗口”,这里的窗口不是我们家里的门窗,而是表示“范围”的意思。
注意事项:partition子句可以省略,省略就是不指定分组,结果如下,只是按成绩由高到低进行了排序:
select *,
rank() over (order by 成绩 desc) as ranking
from 班级表
结果如下:
这就失去了窗口函数的功能,所以一般不要这么使用。
二、窗口函数的作用
在日常工作中,经常会遇到需要在每组内排名,比如下面的业务需求:
排名问题:每个部门按业绩来排名
topN问题:找出每个部门排名前N的员工
面对这类需求,就可以使用sql的高级功能窗口函数了
三、使用方法
1、排序函数rank(),dense_rank(),row_number()
a、rank()
例如下图,是班级表中的内容
如果我们想在每个班级内按成绩排名,得到下面的结果:
SQL语句实现:
select *,
rank() over (partition by 班级
order by 成绩 desc) as ranking
from 班级表
首先来解释下这个sql语句里的select子句。rank是排序的函数。要求是“每个班级内按成绩排名”,这句话可以分为两部分:
1)每个班级内:按班级分组
partition by用来对表分组。在这个例子中,所以我们指定了按“班级”分组(partition by 班级)
2)按成绩排名
order by子句的功能是对分组后的结果进行排序,默认是按照升序(asc)排列。在本例中(order by 成绩 desc)是按成绩这一列排序,加了desc关键词表示降序排列。
通过下图,我们就可以理解partiition by(分组)和order by(在组内排序)的作用了。
b、rank(), dense_rank(), row_number()有什么区别呢?
下面通过代码看下结果就一目了然了:
select *,
rank() over (order by 成绩 desc) as ranking,
dense_rank() over (order by 成绩 desc) as dese_rank,
row_number() over (order by 成绩 desc) as row_num
from 班级表
结果:
三个函数区别如下:
rank函数:这个例子中是5位,5位,5位,8位,也就是如果有并列名次的行,会占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,4。
dense_rank函数:这个例子中是5位,5位,5位,6位,也就是如果有并列名次的行,不占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,2。
row_number函数:这个例子中是5位,6位,7位,8位,也就是不考虑并列名次的情况。比如前3名是并列的名次,排名是正常的1,2,3,4。
最后,需要强调的一点是:在上述的这三个专用窗口函数中,函数后面的括号不需要任何参数,保持()空着就可以。
2、分布函数:PERCENT_RANK()、CUME_DIST()
a、PERCENT_RANK()
- 用途:每行按照公式(rank-1) / (rows-1)进行计算。其中,rank为RANK()函数产生的序号,rows为当前窗口的记录总行数
- 应用场景:不常用
代码如下:
mysql> SELECT
-> RANK() OVER w AS rk,
-> PERCENT_RANK() OVER w AS prk,
-> stu_id, lesson_id, score
-> FROM t_score
-> WHERE stu_id = 1
-> WINDOW w AS (PARTITION BY stu_id ORDER BY score)
-> ;
+----+------+--------+-----------+-------+
| rk | prk | stu_id | lesson_id | score |
+----+------+--------+-----------+-------+
| 1 | 0 | 1 | L003 | 79 |
| 2 | 0.25 | 1 | L002 | 86 |
| 3 | 0.5 | 1 | L004 | 88 |
| 4 | 0.75 | 1 | L005 | 98 |
| 4 | 0.75 | 1 | L001 | 98 |
+----+------+--------+-----------+-------+
b、CUME_DIST()
- 用途:分组内小于、等于当前rank值的行数 / 分组内总行数
- 应用场景:查询小于等于当前成绩(score)的比例
cd1:没有分区,则所有数据均为一组,总行数为8
cd2:按照lesson_id分成了两组,行数各为4
mysql> SELECT stu_id, lesson_id, score,
-> CUME_DIST() OVER (ORDER BY score) AS cd1,
-> CUME_DIST() OVER (PARTITION BY lesson_id ORDER BY score) AS cd2
-> FROM t_score
-> WHERE lesson_id IN ('L001','L002')
-> ;
+--------+-----------+-------+-------+------+
| stu_id | lesson_id | score | cd1 | cd2 |
+--------+-----------+-------+-------+------+
| 2 | L001 | 84 | 0.125 | 0.25 |
| 1 | L001 | 98 | 0.75 | 0.5 |
| 4 | L001 | 99 | 0.875 | 0.75 |
| 3 | L001 | 100 | 1 | 1 |
| 1 | L002 | 86 | 0.25 | 0.25 |
| 4 | L002 | 88 | 0.375 | 0.5 |
| 2 | L002 | 90 | 0.5 | 0.75 |
| 3 | L002 | 91 | 0.625 | 1 |
+--------+-----------+-------+-------+------+
3、前后函数:LAG(expr,n)、LEAD(expr,n)
- 用途:返回位于当前行的前n行(LAG(expr,n))或后n行(LEAD(expr,n))的expr的值
- 应用场景:查询前1名同学的成绩和当前同学成绩的差值
内层SQL先通过LAG()函数得到前1名同学的成绩,外层SQL再将当前同学和前1名同学的成绩做差得到成绩差值diff。
内层SQL先通过LAG()函数得到前1名同学的成绩,
外层SQL再将当前同学和前1名同学的成绩做差得到成绩差值diff。
mysql> SELECT stu_id, lesson_id, score, pre_score,
-> score-pre_score AS diff
-> FROM(
-> SELECT stu_id, lesson_id, score,
-> LAG(score,1) OVER w AS pre_score
-> FROM t_score
-> WHERE lesson_id IN ('L001','L002')
-> WINDOW w AS (PARTITION BY lesson_id ORDER BY score)) t
-> ;
+--------+-----------+-------+-----------+------+
| stu_id | lesson_id | score | pre_score | diff |
+--------+-----------+-------+-----------+------+
| 2 | L001 | 84 | NULL | NULL |
| 1 | L001 | 98 | 84 | 14 |
| 4 | L001 | 99 | 98 | 1 |
| 3 | L001 | 100 | 99 | 1 |
| 1 | L002 | 86 | NULL | NULL |
| 4 | L002 | 88 | 86 | 2 |
| 2 | L002 | 90 | 88 | 2 |
| 3 | L002 | 91 | 90 | 1 |
+--------+-----------+-------+-----------+------+
4、头尾函数:FIRST_VALUE(expr)、LAST_VALUE(expr)
- 用途:返回第一个(FIRST_VALUE(expr))或最后一个(LAST_VALUE(expr))expr的值
- 应用场景:截止到当前成绩,按照日期排序查询第1个和最后1个同学的分数
添加新列:
mysql> ALTER TABLE t_score ADD create_time DATE;
mysql> SELECT stu_id, lesson_id, score, create_time,
-> FIRST_VALUE(score) OVER w AS first_score,
-> LAST_VALUE(score) OVER w AS last_score
-> FROM t_score
-> WHERE lesson_id IN ('L001','L002')
-> WINDOW w AS (PARTITION BY lesson_id ORDER BY create_time)
-> ;
+--------+-----------+-------+-------------+-------------+------------+
| stu_id | lesson_id | score | create_time | first_score | last_score |
+--------+-----------+-------+-------------+-------------+------------+
| 3 | L001 | 100 | 2018-08-07 | 100 | 100 |
| 1 | L001 | 98 | 2018-08-08 | 100 | 98 |
| 2 | L001 | 84 | 2018-08-09 | 100 | 99 |
| 4 | L001 | 99 | 2018-08-09 | 100 | 99 |
| 3 | L002 | 91 | 2018-08-07 | 91 | 91 |
| 1 | L002 | 86 | 2018-08-08 | 91 | 86 |
| 2 | L002 | 90 | 2018-08-09 | 91 | 90 |
| 4 | L002 | 88 | 2018-08-10 | 91 | 88 |
+--------+-----------+-------+-------------+-------------+------------+
5、其它函数:NTH_VALUE(expr, n)、NTILE(n)
a、NTH_VALUE(expr,n)
- 用途:返回窗口中第n个expr的值。expr可以是表达式,也可以是列名
- 应用场景:截止到当前成绩,显示每个同学的成绩中排名第2和第3的成绩的分数
mysql> SELECT stu_id, lesson_id, score,
-> NTH_VALUE(score,2) OVER w AS second_score,
-> NTH_VALUE(score,3) OVER w AS third_score
-> FROM t_score
-> WHERE stu_id IN (1,2)
-> WINDOW w AS (PARTITION BY stu_id ORDER BY score)
-> ;
+--------+-----------+-------+--------------+-------------+
| stu_id | lesson_id | score | second_score | third_score |
+--------+-----------+-------+--------------+-------------+
| 1 | L003 | 79 | NULL | NULL |
| 1 | L002 | 86 | 86 | NULL |
| 1 | L004 | 88 | 86 | 88 |
| 1 | L001 | 98 | 86 | 88 |
| 1 | L005 | 98 | 86 | 88 |
| 2 | L004 | 75 | NULL | NULL |
| 2 | L005 | 77 | 77 | NULL |
| 2 | L001 | 84 | 77 | 84 |
| 2 | L003 | 86 | 77 | 84 |
| 2 | L002 | 90 | 77 | 84 |
+--------+-----------+-------+--------------+-------------+
b、NTILE(n)
NTILE(n)函数在数据分析中应用较多,比如由于数据量大,需要将数据平均分配到n个并行的进程分别计算,此时就可以用NTILE(n)对数据进行分组(由于记录数不一定被n整除,所以数据不一定完全平均),然后将不同桶号的数据再分配。
- 用途:将分区中的有序数据分为n个等级,记录等级数
- 应用场景:将每门课程按照成绩分成3组
mysql> SELECT
-> NTILE(3) OVER w AS nf,
-> stu_id, lesson_id, score
-> FROM t_score
-> WHERE lesson_id IN ('L001','L002')
-> WINDOW w AS (PARTITION BY lesson_id ORDER BY score)
-> ;
+------+--------+-----------+-------+
| nf | stu_id | lesson_id | score |
+------+--------+-----------+-------+
| 1 | 2 | L001 | 84 |
| 1 | 1 | L001 | 98 |
| 2 | 4 | L001 | 99 |
| 3 | 3 | L001 | 100 |
| 1 | 1 | L002 | 86 |
| 1 | 4 | L002 | 88 |
| 2 | 2 | L002 | 90 |
| 3 | 3 | L002 | 91 |
+------+--------+-----------+-------+
四、使用聚合函数作为窗口函数
聚和窗口函数和上面提到的专用窗口函数用法完全相同,只需要把聚合函数写在窗口函数的位置即可,但是函数后面括号里面不能为空,需要指定聚合的列名。
select *,
sum(成绩) over (order by 学号) as current_sum,
avg(成绩) over (order by 学号) as current_avg,
count(成绩) over (order by 学号) as current_count,
max(成绩) over (order by 学号) as current_max,
min(成绩) over (order by 学号) as current_min
from 班级表
结果如下:
你发现其中的规律没有:
如上图,以sum举例, 聚合函数sum在窗口函数中,是对自身记录、及位于自身记录以上的数据进行求和的结果。
比如0004号,在使用sum窗口函数后的结果,是对0001,0002,0003,0004号的成绩求和,若是0005号,则结果是0001号~0005号成绩的求和,以此类推。
比如0005号后面的聚合窗口函数结果是:学号0001~0005五人成绩的总和、平均、计数及最大最小值。
如果想要知道所有人成绩的总和、平均等聚合结果,看最后一行即可。
这样使用窗口函数的作用是什么呢?
聚合函数作为窗口函数,可以在每一行的数据里直观的看到,截止到本行数据,统计数据是多少(最大值、最小值等)。同时可以看出每一行数据,对整体统计数据的影响。
五、总结
1、同时具有分组(partition by)和排序(order by)的功能
2、不减少原表的行数,所以经常用来在每组内排名
1、窗口函数原则上只能写在select子句中
使用场景
业务需求“在每组内排名”,比如:
排名问题:每个部门按业绩来排名
topN问题:找出每个部门排名前N的员工进行奖励