RAG面试内容整理-21. RAG应用框架与实战案例

133 篇文章

随着RAG概念火热,业界出现了许多方便构建RAG应用的框架和实例。了解这些既能加深对RAG的理解,也能体现与实际结合的能力。

开发框架:例如Haystack(deepset.ai)是一个开源QA框架,提供了Pipeline接口,可以轻松组合检索器(支持Elasticsearch、FAISS等)和Reader(如Transformers问答模型或生成模型)。它内置了查询扩展、重排序、文档分段等模块,开发者通过配置即可构建RAG流水线。LangChain是最近非常流行的库,它面向LLM应用编排,里面的“RetrievalQA”链就是RAG的一种封装,实现了给定知识库检索Top k文档然后和Prompt模板结合调用LLM生成答案。LangChain让我们可以不用关注底层细节,用几行代码串联起检索和生成,非常适合快速原型。类似还有LlamaIndex(GPT Index),专注于文档索引和检索与LLM集成,也提供各种索引类型(向量、关键词等)和查询路由功能。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不务正业的猿

谢谢您的支持与鼓励!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值