随着RAG概念火热,业界出现了许多方便构建RAG应用的框架和实例。了解这些既能加深对RAG的理解,也能体现与实际结合的能力。
开发框架:例如Haystack(deepset.ai)是一个开源QA框架,提供了Pipeline接口,可以轻松组合检索器(支持Elasticsearch、FAISS等)和Reader(如Transformers问答模型或生成模型)。它内置了查询扩展、重排序、文档分段等模块,开发者通过配置即可构建RAG流水线。LangChain是最近非常流行的库,它面向LLM应用编排,里面的“RetrievalQA”链就是RAG的一种封装,实现了给定知识库检索Top k文档然后和Prompt模板结合调用LLM生成答案。LangChain让我们可以不用关注底层细节,用几行代码串联起检索和生成,非常适合快速原型。类似还有LlamaIndex(GPT Index),专注于文档索引和检索与LLM集成,也提供各种索引类型(向量、关键词等)和查询路由功能。<