线性回归之原理分析与实践

本文详细介绍了线性回归的原理,包括环境配置、损失函数、梯度下降法求解参数,以及实际编程测试和效果展示。通过理解并应用线性回归,可以有效地进行预测分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、线性回归

1、环境:Pycharm2017.2,Win7,python3.6
2、方法:损失函数一般用均方误差来表示,对损失函数进行微分,可以得到梯度,使用梯度下降法不断迭代,可以将参数调整为最佳(前提条件是损失函数为凸函数,并且学习率比较合适)。使用公式: weight = weight - 梯度*学习率

3、目标函数:
在这里插入图片描述

4、损失函数:
在这里插入图片描述
5、梯度函数(即求偏导):
在这里插入图片描述
求偏导方法:第一、求和符号对求偏导没有啥影响,不要受其干扰,第二、求导,复杂情况下,先整体再局部,复杂的函数往往是一个函数套在另一个函数
6、编程测试:

import numpy as np
import matplotlib.pyplot as plt
m = 25
learning_rate = 0.01
X0 = np.arange(0, m, 1).reshape(m, 1)    # m*1
X1 = np.ones(m).reshape(m, 1)            # m*1, 作为偏置项
X = np.hstack((X0, X1))                  # m*2  横向堆叠
y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值