一、线性回归
1、环境:Pycharm2017.2,Win7,python3.6
2、方法:损失函数一般用均方误差来表示,对损失函数进行微分,可以得到梯度,使用梯度下降法不断迭代,可以将参数调整为最佳(前提条件是损失函数为凸函数,并且学习率比较合适)。使用公式: weight = weight - 梯度*学习率
3、目标函数:
4、损失函数:
5、梯度函数(即求偏导):
求偏导方法:第一、求和符号对求偏导没有啥影响,不要受其干扰,第二、求导,复杂情况下,先整体再局部,复杂的函数往往是一个函数套在另一个函数
6、编程测试:
import numpy as np
import matplotlib.pyplot as plt
m = 25
learning_rate = 0.01
X0 = np.arange(0, m, 1).reshape(m, 1) # m*1
X1 = np.ones(m).reshape(m, 1) # m*1, 作为偏置项
X = np.hstack((X0, X1)) # m*2 横向堆叠
y