注意:该项目只展示部分功能,如需了解,文末咨询即可。
1.开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
在当今数字化时代,国家公务员招录工作愈发复杂且数据量庞大。每年国考吸引了众多考生,招录职位信息涉及众多维度,如地区、部门、学历要求等。传统的人工分析方式难以高效处理这些复杂数据,且容易出现误差。随着大数据技术的不断发展,其在数据处理和分析方面的优势逐渐显现。利用大数据技术可以快速处理海量的招录数据,并从中提取有价值的信息,为考生提供更科学的报考参考。基于此,本课题旨在开发一个基于大数据的国家公务员招录职位信息可视化分析系统,通过技术手段提升对招录信息的分析效率和准确性,帮助考生更好地了解国考招录情况。
本课题开发的系统具有多方面的实际意义。从技术角度来看,它为计算机专业学生提供了一个实践大数据技术的平台,有助于学生将理论知识与实际应用相结合,提升专业技能。从应用角度来看,系统能够帮助考生更全面地了解国家公务员招录的职位信息,从而做出更合理的报考决策。通过对招录数据的可视化分析,考生可以直观地看到不同地区、部门的竞争态势,以及各职位的学历和专业要求,这有助于他们根据自身情况选择更适合的职位,提高报考成功率。该系统也为高校和培训机构提供了教学和培训的参考依据,帮助他们更好地指导学生进行职业规划和备考。虽然本系统只是一个毕业设计项目,但它在实际应用中仍具有一定的价值,能够为相关群体提供切实的帮助。
基于大数据的国家公务员招录职位信息可视化分析系统是一款专为计算机专业学生设计的毕业设计项目,旨在通过大数据技术深入分析国家公务员招录职位信息,为用户提供全面且直观的招录态势分析。系统利用 Python、Spark、Hadoop 等大数据处理技术,高效处理海量招考数据,从宏观招录态势、职位要求与特征、竞争格局等多个维度展开分析。它能够统计全国及各省份的招录规模与竞争度,筛选出热门与冷门部门,分析不同学历和专业要求下的职位竞争情况,还能挖掘“最卷”职位与“较冷门”职位,为考生提供精准的报考参考。同时,系统借助 Vue 和 Echarts 实现数据可视化,以直观的图表形式呈现分析结果,使用户能快速理解复杂数据背后的规律,为计算机专业学生的毕业设计提供一个兼具实用性和创新性的实践项目,帮助他们深入掌握大数据技术在实际场景中的应用。
3 系统展示
3.1 功能展示视频
基于大数据的大学生毕业就业数据分析与可视化系统Spark源码 !!!请点击这里查看功能演示!!!
3.2 大屏页面
3.3 分析页面
3.4 基础页面
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
基于spark+hadoop的大学生就业数据因素分析与可视化系统开发
基于Python+大数据的省级碳排放关联性分析与可视化系统
基于hadoop+spark的肥胖风险数据可视化分析系统
Python+Spark构建的当当网大数据分析可视化系统
5 部分功能代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, desc
# 初始化SparkSession
spark = SparkSession.builder.appName("NationalCivilServantRecruitmentAnalysis").getOrCreate()
# 1. 全国招录总体情况统计
def national_recruitment_statistics(data_path):
# 读取数据
df = spark.read.csv(data_path, header=True, inferSchema=True)
# 计算总职位数、总招考人数、总报考人数
total_positions = df.count()
total_recruitment = df.agg({"招考人数": "sum"}).collect()[0][0]
total_applicants = df.agg({"报考人数": "sum"}).collect()[0][0]
# 计算全国总体平均竞争比
avg_competition_ratio = total_applicants / total_recruitment
# 打印结果
print(f"总职位数: {total_positions}")
print(f"总招考人数: {total_recruitment}")
print(f"总报考人数: {total_applicants}")
print(f"全国总体平均竞争比: {avg_competition_ratio:.2f}")
# 2. 各省份招录规模与竞争度分析
def province_recruitment_analysis(data_path):
# 读取数据
df = spark.read.csv(data_path, header=True, inferSchema=True)
# 按省份分组,统计职位总数、招考总人数和报考总人数
province_stats = df.groupBy("地区").agg(
{"职位名称": "count", "招考人数": "sum", "报考人数": "sum"}
).withColumnRenamed("count(职位名称)", "职位总数") \
.withColumnRenamed("sum(招考人数)", "招考总人数") \
.withColumnRenamed("sum(报考人数)", "报考总人数")
# 计算平均竞争比
province_stats = province_stats.withColumn("平均竞争比", col("报考总人数") / col("招考总人数"))
# 按平均竞争比降序排序
province_stats = province_stats.orderBy(desc("平均竞争比"))
# 显示结果
province_stats.show()
# 3. 十大“最卷”职位排行
def top10_most_competitive_positions(data_path):
# 读取数据
df = spark.read.csv(data_path, header=True, inferSchema=True)
# 计算每个职位的竞争比
df = df.withColumn("职位竞争比", col("报考人数") / col("招考人数"))
# 按竞争比降序排序,筛选出前10个职位
top10_positions = df.orderBy(desc("职位竞争比")).limit(10)
# 选择需要显示的列
top10_positions = top10_positions.select("职位名称", "用人司局", "招考人数", "报考人数", "职位竞争比")
# 显示结果
top10_positions.show()
# 示例数据路径
data_path = "2024国考报名信息.csv"
# 调用函数
national_recruitment_statistics(data_path)
province_recruitment_analysis(data_path)
top10_most_competitive_positions(data_path)
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓