注意:该项目只展示部分功能,如需了解,文末咨询即可。
1.开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
随着社会经济的快速发展和大数据技术的日益成熟,传统的人口普查收入数据分析方法已无法满足现代社会对深度数据洞察的需求。人口普查数据作为国家统计的重要组成部分,蕴含着丰富的社会经济信息,但由于数据体量庞大、维度复杂、关联性强,需要运用现代大数据技术进行深度挖掘和分析。基于人口普查收入数据集,利用Python、Spark、Hadoop等大数据处理技术,结合Vue、Echarts等前端可视化框架,构建一个基于Hadoop+Spark的人口普查收入数据分析与可视化系统,对于理解社会收入分配规律、探索影响收入水平的关键因素具有重要的现实意义。
基于Hadoop+Spark的人口普查收入数据分析与可视化系统的开发具有重要的理论价值和实践意义,从理论层面,通过对人口普查收入数据的多维度深度分析,能够验证和丰富人力资本理论、社会分层理论等经济社会学理论。从实践层面,系统能够为政府部门制定收入分配政策、教育投资决策、就业指导政策提供科学的数据支撑,为个人职业规划和教育投资提供参考依据。同时通过运用Spark、Hadoop等先进的大数据处理技术,结合机器学习聚类算法,实现了对传统统计分析方法的升级,提供了更加精准和深入的数据洞察,推动了人口经济学研究方法的创新发展。
基于Hadoop+Spark的人口普查收入数据分析与可视化系统运用Python、Spark、Hadoop等大数据处理技术,结合MySQL数据库管理和Vue+Echarts可视化展示,构建了一套完整的五维度收入数据分析体系。研究内容涵盖了从基础统计到高级算法应用的全谱分析方法,通过对年龄、性别、种族、教育程度、职业类别、工作时长、婚姻状况、家庭角色、资本收益等多个维度的深度挖掘,全面揭示影响个人收入水平的关键因素及其相互关系。系统采用分层递进的分析策略,从宏观人口画像到微观个体特征,从基础统计分析到机器学习聚类,形成了系统性的收入影响因素研究框架。每个分析维度都对应独立的CSV数据输出和专门的可视化图表,确保研究结果的可验证性和可重现性。
3 系统展示
3.1 功能展示视频
基于大数据+python的人口普查收入数据分析与可视化系统 !!!请点击这里查看功能演示!!!
3.2 大屏页面
3.3 分析页面
3.4 基础页面
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
基于Hadoop和python的租房数据分析与可视化系统
基于Hadoop+Spark的全球经济指标数据分析与可视化系统
基于spark+hadoop的全球能源消耗量分析与可视化系统
5 部分功能代码
spark = SparkSession.builder.appName("IncomeDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
income_df = spark.read.csv("Income_data.csv", header=True, inferSchema=True)
income_df.createOrReplaceTempView("income_data")
def analyze_education_income_relationship():
education_income_sql = """
SELECT
education,
education_num,
COUNT(*) as total_count,
SUM(CASE WHEN income = '>50K' THEN 1 ELSE 0 END) as high_income_count,
AVG(CASE WHEN income = '>50K' THEN 1.0 ELSE 0.0 END) as high_income_rate,
AVG(hours_per_week) as avg_work_hours,
AVG(age) as avg_age
FROM income_data
WHERE education IS NOT NULL AND education != '?'
GROUP BY education, education_num
ORDER BY education_num
"""
education_result = spark.sql(education_income_sql)
education_pandas_df = education_result.toPandas()
education_pandas_df['income_return_rate'] = education_pandas_df['high_income_rate'] * 100
education_pandas_df['education_investment_score'] = education_pandas_df['education_num'] * education_pandas_df['high_income_rate']
for idx, row in education_pandas_df.iterrows():
if row['education_num'] >= 13:
education_level_category = "高等教育"
elif row['education_num'] >= 9:
education_level_category = "中等教育"
else:
education_level_category = "基础教育"
education_pandas_df.loc[idx, 'education_category'] = education_level_category
education_summary = education_pandas_df.groupby('education_category').agg({
'total_count': 'sum',
'high_income_count': 'sum',
'high_income_rate': 'mean',
'avg_work_hours': 'mean'
}).reset_index()
education_pandas_df.to_csv('education_income_analysis.csv', index=False)
return education_pandas_df, education_summary
def analyze_income_distribution_overview():
income_distribution_sql = """
SELECT
income,
COUNT(*) as count,
ROUND(COUNT(*) * 100.0 / (SELECT COUNT(*) FROM income_data), 2) as percentage,
AVG(age) as avg_age,
AVG(hours_per_week) as avg_hours,
AVG(education_num) as avg_education,
AVG(capital_gain) as avg_capital_gain,
AVG(capital_loss) as avg_capital_loss
FROM income_data
GROUP BY income
"""
income_dist_result = spark.sql(income_distribution_sql)
income_dist_pandas = income_dist_result.toPandas()
demographic_analysis_sql = """
SELECT
sex,
race,
income,
COUNT(*) as count
FROM income_data
GROUP BY sex, race, income
ORDER BY sex, race, income
"""
demographic_result = spark.sql(demographic_analysis_sql)
demographic_pandas = demographic_result.toPandas()
demographic_pivot = demographic_pandas.pivot_table(
index=['sex', 'race'],
columns='income',
values='count',
fill_value=0
).reset_index()
if '>50K' in demographic_pivot.columns and '<=50K' in demographic_pivot.columns:
demographic_pivot['high_income_rate'] = demographic_pivot['>50K'] / (demographic_pivot['>50K'] + demographic_pivot['<=50K'])
demographic_pivot['total_population'] = demographic_pivot['>50K'] + demographic_pivot['<=50K']
income_dist_pandas.to_csv('income_distribution_overview.csv', index=False)
demographic_pivot.to_csv('demographic_income_analysis.csv', index=False)
return income_dist_pandas, demographic_pivot
def analyze_user_clustering_segmentation():
clustering_features_sql = """
SELECT
age,
education_num,
hours_per_week,
capital_gain,
capital_loss,
CASE WHEN income = '>50K' THEN 1 ELSE 0 END as high_income_flag,
CASE WHEN sex = 'Male' THEN 1 ELSE 0 END as male_flag,
CASE WHEN marital_status LIKE '%Married%' THEN 1 ELSE 0 END as married_flag
FROM income_data
WHERE age IS NOT NULL AND education_num IS NOT NULL
AND hours_per_week IS NOT NULL AND hours_per_week > 0
"""
clustering_data = spark.sql(clustering_features_sql)
clustering_pandas = clustering_data.toPandas()
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import numpy as np
feature_columns = ['age', 'education_num', 'hours_per_week', 'capital_gain', 'capital_loss']
scaler = StandardScaler()
scaled_features = scaler.fit_transform(clustering_pandas[feature_columns])
kmeans = KMeans(n_clusters=4, random_state=42, max_iter=300)
clustering_pandas['cluster_id'] = kmeans.fit_predict(scaled_features)
cluster_analysis = clustering_pandas.groupby('cluster_id').agg({
'age': ['mean', 'std'],
'education_num': ['mean', 'std'],
'hours_per_week': ['mean', 'std'],
'capital_gain': ['mean', 'std'],
'capital_loss': ['mean', 'std'],
'high_income_flag': ['mean', 'count'],
'male_flag': 'mean',
'married_flag': 'mean'
}).round(2)
cluster_analysis.columns = ['_'.join(col).strip() for col in cluster_analysis.columns]
cluster_analysis = cluster_analysis.reset_index()
for cluster_id in clustering_pandas['cluster_id'].unique():
cluster_mask = clustering_pandas['cluster_id'] == cluster_id
cluster_data = clustering_pandas[cluster_mask]
avg_age = cluster_data['age'].mean()
avg_education = cluster_data['education_num'].mean()
high_income_rate = cluster_data['high_income_flag'].mean()
avg_hours = cluster_data['hours_per_week'].mean()
if high_income_rate > 0.5 and avg_education > 12:
cluster_label = f"高知高薪奋斗型_集群{cluster_id}"
elif avg_hours > 40 and high_income_rate < 0.3:
cluster_label = f"蓝领稳定型_集群{cluster_id}"
elif avg_age > 45 and high_income_rate > 0.3:
cluster_label = f"中年精英型_集群{cluster_id}"
else:
cluster_label = f"普通工作型_集群{cluster_id}"
clustering_pandas.loc[clustering_pandas['cluster_id'] == cluster_id, 'cluster_label'] = cluster_label
clustering_pandas.to_csv('user_clustering_analysis.csv', index=False)
cluster_analysis.to_csv('cluster_summary_analysis.csv', index=False)
return clustering_pandas, cluster_analysis
education_result, education_summary = analyze_education_income_relationship()
income_overview, demographic_analysis = analyze_income_distribution_overview()
user_clusters, cluster_summary = analyze_user_clustering_segmentation()
spark.stop()
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓