注意:该项目只展示部分功能,如需了解,文末咨询即可。
1.开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
随着深圳市人口老龄化进程加速,养老服务需求急剧增长,传统的养老机构管理和决策模式已无法满足现代化、精细化的服务要求。当前深圳市养老机构数据存在分散存储、信息孤岛、缺乏统一分析等问题,政府部门和市民在进行养老资源配置决策时往往依赖经验判断,缺少数据支撑。基于此现状,迫切需要构建一个集数据采集、存储、分析和可视化于一体的基于K-Means聚类和大数据的养老机构特征分析与可视化系统,运用大数据技术深度挖掘养老机构的空间分布规律、服务能力特征和资源配置效率,为深圳市养老事业的科学发展提供数据驱动的决策支持。
本系统基于深圳市养老机构的多维度数据,运用Spark+Hadoop大数据处理架构和Python数据分析技术,构建了一套完整的基于K-Means聚类和大数据的养老机构特征分析与可视化系统。研究内容主要围绕四个核心维度展开:首先是空间分布维度分析,通过对各行政区养老机构数量、床位资源、性质构成、平均规模和护理能力的深入剖析,全面揭示深圳市养老资源的地理配置格局和区域差异特征;其次是类型性质维度分析,重点探究不同性质机构在供给贡献、平均规模、护理能力等方面的差异化特征,以及不同规模等级机构的分布结构和服务能力关联性;第三是服务能力标杆分析,通过构建多重排名体系和区间分布统计,识别行业领先机构和整体服务质量水平;最后是基于算法的特征聚类与热点分析,运用K-Means聚类算法实现机构的智能分类,结合地址信息的文本挖掘技术发现地理聚集热点,为养老服务的个性化推荐和空间规划提供科学支撑。整个研究体系通过Vue+Echarts技术实现可视化呈现,为政府决策者、投资者和市民提供了直观、准确、实用的数据分析服务。
基于K-Means聚类和大数据的养老机构特征分析与可视化系统具体功能研究内容如下所示。
1.空间分布维度分析:各行政区养老机构数量分布统计为资源规划提供基础数据支撑,总床位数与护理型床位数对比分析衡量各区实际承载能力。各行政区性质构成分析揭示市场结构特征,平均规模分析反映区域发展模式,护理能力分析评估专业化服务水平。
2.类型性质维度分析:不同性质机构供给贡献分析明确各类机构功能定位,平均规模与护理能力对比探究发展策略差异。规模等级划分统计描绘产业整体结构,不同规模护理能力分析验证规模与服务水平关联性。
3.服务能力标杆分析:总床位数TOP10排名展示市场重要力量,护理型床位数TOP10筛选最强医疗护理资源。护理型床位占比TOP10识别专业型标杆机构,护理能力区间分布揭示行业整体质量水平。
4.算法聚类与热点分析:地址词云分析发现地理聚集热点区域,K-Means聚类实现数据驱动的科学分类和个性化推荐。聚类群组分布分析结合算法与地理空间,雷达图分析提供多维度特征对比展示。
3 系统展示
3.1 功能展示视频
基于hadoop和spark的养老机构信息可视化分析系统源码 !!!请点击这里查看功能演示!!!
3.2 大屏页面
3.3 分析页面
3.4 基础页面
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
基于Hadoop+Spark的人口普查收入数据分析与可视化系统
基于Hadoop和python的租房数据分析与可视化系统
基于Hadoop+Spark的全球经济指标数据分析与可视化系统
5 部分功能代码
spark = SparkSession.builder.appName("ElderCareAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/eldercare").option("dbtable", "institutions").option("user", "root").option("password", "password").load()
def kmeans_clustering_analysis():
feature_cols = ['beds', 'nursing_beds_ratio']
assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
feature_df = assembler.transform(df.withColumn("nursing_beds_ratio", col("nursing_beds") / col("beds")))
scaler = StandardScaler(inputCol="features", outputCol="scaled_features", withStd=True, withMean=False)
scaler_model = scaler.fit(feature_df)
scaled_df = scaler_model.transform(feature_df)
kmeans = KMeans(featuresCol="scaled_features", predictionCol="cluster", k=4, seed=42, maxIter=100)
kmeans_model = kmeans.fit(scaled_df)
clustered_df = kmeans_model.transform(scaled_df)
cluster_centers = kmeans_model.clusterCenters()
cluster_summary = clustered_df.groupBy("cluster").agg(
count("*").alias("institution_count"),
avg("beds").alias("avg_beds"),
avg("nursing_beds_ratio").alias("avg_nursing_ratio"),
avg("nursing_beds").alias("avg_nursing_beds")
).orderBy("cluster")
silhouette_evaluator = ClusteringEvaluator(featuresCol="scaled_features", metricName="silhouette")
silhouette_score = silhouette_evaluator.evaluate(clustered_df)
cluster_labels = {0: "小规模基础照料型", 1: "中等规模均衡型", 2: "大规模高护理型", 3: "小规模专业护理型"}
labeled_df = clustered_df.withColumn("cluster_label",
when(col("cluster") == 0, cluster_labels[0])
.when(col("cluster") == 1, cluster_labels[1])
.when(col("cluster") == 2, cluster_labels[2])
.otherwise(cluster_labels[3]))
regional_distribution = labeled_df.groupBy("district", "cluster_label").count().orderBy("district", "count")
result = {
"cluster_summary": cluster_summary.collect(),
"silhouette_score": silhouette_score,
"cluster_centers": cluster_centers.tolist(),
"regional_distribution": regional_distribution.collect(),
"total_clustered": clustered_df.count()
}
return result
def regional_resource_distribution_analysis():
district_stats = df.groupBy("district").agg(
count("institution_name").alias("institution_count"),
sum("beds").alias("total_beds"),
sum("nursing_beds").alias("total_nursing_beds"),
avg("beds").alias("avg_institution_size"),
avg(col("nursing_beds") / col("beds")).alias("avg_nursing_ratio"),
countDistinct("nature").alias("nature_types")
).orderBy(desc("total_beds"))
nature_composition = df.groupBy("district", "nature").count().orderBy("district", "nature")
nature_pivot = nature_composition.groupBy("district").pivot("nature").agg(sum("count")).fillna(0)
bed_capacity_ranking = district_stats.select("district", "total_beds", "institution_count").orderBy(desc("total_beds"))
nursing_capacity_ranking = district_stats.select("district", "total_nursing_beds", "avg_nursing_ratio").orderBy(desc("total_nursing_beds"))
resource_efficiency = district_stats.withColumn("beds_per_institution", col("total_beds") / col("institution_count")).withColumn("nursing_beds_per_institution", col("total_nursing_beds") / col("institution_count"))
district_comparison = resource_efficiency.select("district", "beds_per_institution", "nursing_beds_per_institution", "avg_nursing_ratio").orderBy(desc("beds_per_institution"))
total_resources = df.agg(sum("beds").alias("city_total_beds"), sum("nursing_beds").alias("city_total_nursing_beds"), count("*").alias("city_total_institutions")).collect()[0]
resource_share = district_stats.withColumn("beds_share_percent", (col("total_beds") / total_resources["city_total_beds"] * 100)).withColumn("institutions_share_percent", (col("institution_count") / total_resources["city_total_institutions"] * 100))
top_districts = resource_share.select("district", "beds_share_percent", "institutions_share_percent", "avg_nursing_ratio").orderBy(desc("beds_share_percent")).limit(5)
regional_gaps = district_stats.select("district", "avg_institution_size", "avg_nursing_ratio").withColumn("size_gap_from_avg", col("avg_institution_size") - district_stats.agg(avg("avg_institution_size")).collect()[0][0]).withColumn("nursing_gap_from_avg", col("avg_nursing_ratio") - district_stats.agg(avg("avg_nursing_ratio")).collect()[0][0])
result = {
"district_overview": district_stats.collect(),
"nature_composition": nature_pivot.collect(),
"bed_capacity_ranking": bed_capacity_ranking.collect(),
"nursing_capacity_ranking": nursing_capacity_ranking.collect(),
"resource_efficiency": district_comparison.collect(),
"city_totals": total_resources.asDict(),
"top_performing_districts": top_districts.collect(),
"regional_gaps_analysis": regional_gaps.collect()
}
return result
def service_capacity_benchmark_analysis():
bed_top10 = df.select("institution_name", "district", "nature", "beds", "nursing_beds").orderBy(desc("beds")).limit(10)
nursing_bed_top10 = df.select("institution_name", "district", "nature", "beds", "nursing_beds").orderBy(desc("nursing_beds")).limit(10)
nursing_ratio_df = df.withColumn("nursing_ratio", col("nursing_beds") / col("beds")).filter(col("nursing_ratio").isNotNull() & (col("nursing_ratio") > 0))
nursing_ratio_top10 = nursing_ratio_df.select("institution_name", "district", "nature", "beds", "nursing_beds", "nursing_ratio").orderBy(desc("nursing_ratio")).limit(10)
ratio_intervals = nursing_ratio_df.withColumn("ratio_interval",
when(col("nursing_ratio") == 0, "0%")
.when((col("nursing_ratio") > 0) & (col("nursing_ratio") <= 0.2), "1-20%")
.when((col("nursing_ratio") > 0.2) & (col("nursing_ratio") <= 0.4), "21-40%")
.when((col("nursing_ratio") > 0.4) & (col("nursing_ratio") <= 0.6), "41-60%")
.when((col("nursing_ratio") > 0.6) & (col("nursing_ratio") <= 0.8), "61-80%")
.otherwise("81-100%"))
interval_distribution = ratio_intervals.groupBy("ratio_interval").agg(count("*").alias("institution_count"), avg("beds").alias("avg_beds_in_interval")).orderBy("ratio_interval")
excellence_criteria = df.filter((col("beds") >= 200) & ((col("nursing_beds") / col("beds")) >= 0.6))
excellent_institutions = excellence_criteria.select("institution_name", "district", "nature", "beds", "nursing_beds", (col("nursing_beds") / col("beds")).alias("nursing_ratio")).orderBy(desc("beds"))
industry_benchmarks = df.agg(
avg("beds").alias("industry_avg_beds"),
avg("nursing_beds").alias("industry_avg_nursing_beds"),
avg(col("nursing_beds") / col("beds")).alias("industry_avg_nursing_ratio"),
max("beds").alias("max_beds"),
max("nursing_beds").alias("max_nursing_beds")
).collect()[0]
performance_tiers = df.withColumn("nursing_ratio", col("nursing_beds") / col("beds")).withColumn("performance_tier",
when((col("beds") >= 300) & (col("nursing_ratio") >= 0.7), "顶级综合型")
.when((col("beds") >= 200) & (col("nursing_ratio") >= 0.6), "优质大型")
.when((col("beds") >= 100) & (col("nursing_ratio") >= 0.5), "标准中型")
.when(col("nursing_ratio") >= 0.8, "专业护理型")
.otherwise("基础服务型"))
tier_statistics = performance_tiers.groupBy("performance_tier").agg(count("*").alias("count"), avg("beds").alias("avg_beds"), avg("nursing_ratio").alias("avg_nursing_ratio")).orderBy(desc("count"))
result = {
"bed_capacity_top10": bed_top10.collect(),
"nursing_bed_top10": nursing_bed_top10.collect(),
"nursing_ratio_top10": nursing_ratio_top10.collect(),
"nursing_ratio_distribution": interval_distribution.collect(),
"excellent_institutions": excellent_institutions.collect(),
"industry_benchmarks": industry_benchmarks.asDict(),
"performance_tier_stats": tier_statistics.collect(),
"total_analyzed_institutions": df.count()
}
return result
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓