注意:该项目只展示部分功能,如需了解,文末咨询即可。
1.开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
随着现代生活节奏加快、工作压力增大以及环境污染加剧,脱发问题已成为影响现代人身心健康的重要问题,据统计全球约有20亿人受到不同程度的脱发困扰。传统的脱发诊断和预防往往依赖医生经验和简单的问诊,缺乏对多维度影响因素的系统性分析。随着大数据技术的发展和医疗健康数据的积累,运用Python、Spark、Hadoop等大数据技术对脱发影响因素进行深度挖掘分析成为可能,为脱发的精准预防和个性化治疗提供科学依据。
本研究基于大数据挖掘技术,构建了一个全方位的脱发影响因素分析与预测体系。研究内容涵盖人口统计学特征、生活习惯、环境因素、医疗状况、营养状况以及心理压力等多个维度对脱发的影响机制。通过对大规模脱发相关数据的深度分析,建立了科学的多因素关联分析框架,揭示各类风险因素的单独作用和交互效应。系统采用先进的机器学习算法构建脱发风险预测模型,能够根据个体的具体情况进行精准的风险评估。研究还通过可视化技术将复杂的数据分析结果以直观的图表形式呈现,为用户提供清晰易懂的分析报告。整个研究体系不仅有助于深入理解脱发的发生机理,更为制定个性化的预防和治疗策略提供科学依据,对推动毛发健康领域的精准医疗发展具有重要意义。
基于机器学习的脱发风险因素分析与预测系统主要包含四大核心功能模块:人口统计学特征分析模块,深度分析年龄、遗传因素、荷尔蒙变化等人口学特征与脱发的关联关系;生活习惯与环境因素分析模块,评估护发习惯、环境暴露、吸烟行为、体重变化等生活方式对脱发的影响;医疗与营养状况分析模块,研究各类疾病、药物治疗、营养缺乏与脱发的关系;压力与综合风险因素分析模块,量化压力影响并构建多因素风险评估模型;还包含脱发风险预测模块,基于随机森林算法实现个性化脱发风险预测。
3 系统展示
3.1 功能展示视频
基于大数据+随机森林算法的脱发影响因素分析与预测系统源码项目 !!!请点击这里查看功能演示!!!
3.2 大屏页面
3.3 分析页面
3.4 预测页面
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
基于Hadoop+Spark的世界500强企业数据分析与可视化系统
基于Python+大数据的超市销售行为分析与预测系统
基于Spark+Hadoop的食管癌临床数据分析与可视化系统
基于K-Means聚类和大数据的养老机构特征分析与可视化系统
5 部分功能代码
def hairloss_risk_prediction():
connection = mysql.connector.connect(host='localhost', database='hairloss_db', user='root', password='password')
query = "SELECT Genetics, Hormonal_Changes, Stress, Age, Poor_Hair_Care_Habits, Smoking, Hair_Loss FROM patient_data"
df_pandas = pd.read_sql(query, connection)
connection.close()
df_spark = spark.createDataFrame(df_pandas)
df_spark = df_spark.withColumn("genetics_encoded", when(col("Genetics") == "Yes", 1.0).otherwise(0.0))
df_spark = df_spark.withColumn("hormonal_encoded", when(col("Hormonal_Changes") == "Yes", 1.0).otherwise(0.0))
df_spark = df_spark.withColumn("stress_encoded", when(col("Stress") == "High", 2.0).when(col("Stress") == "Medium", 1.0).otherwise(0.0))
df_spark = df_spark.withColumn("age_normalized", col("Age") / 100.0)
df_spark = df_spark.withColumn("hair_care_encoded", when(col("Poor_Hair_Care_Habits") == "Yes", 1.0).otherwise(0.0))
df_spark = df_spark.withColumn("smoking_encoded", when(col("Smoking") == "Yes", 1.0).otherwise(0.0))
df_spark = df_spark.withColumn("label", when(col("Hair_Loss") == "Yes", 1.0).otherwise(0.0))
feature_cols = ["genetics_encoded", "hormonal_encoded", "stress_encoded", "age_normalized", "hair_care_encoded", "smoking_encoded"]
vector_assembler = VectorAssembler(inputCols=feature_cols, outputCol="features")
df_vectorized = vector_assembler.transform(df_spark).select("features", "label")
train_data, test_data = df_vectorized.randomSplit([0.8, 0.2], seed=42)
rf_classifier = RandomForestClassifier(featuresCol="features", labelCol="label", numTrees=100, maxDepth=10, seed=42)
rf_model = rf_classifier.fit(train_data)
predictions = rf_model.transform(test_data)
evaluator = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="rawPrediction", metricName="areaUnderROC")
auc_score = evaluator.evaluate(predictions)
accuracy_evaluator = BinaryClassificationEvaluator(labelCol="label", rawPredictionCol="rawPrediction", metricName="areaUnderPR")
precision_recall_auc = accuracy_evaluator.evaluate(predictions)
feature_importance = rf_model.featureImportances.toArray()
feature_importance_dict = dict(zip(feature_cols, feature_importance))
prediction_stats = predictions.groupBy("prediction").count().collect()
confusion_matrix = predictions.select("label", "prediction").rdd.map(lambda row: (row[0], row[1])).countByValue()
high_risk_predictions = predictions.filter(col("prediction") == 1.0).agg(avg("probability").alias("avg_high_risk_probability"), count("*").alias("high_risk_count"))
low_risk_predictions = predictions.filter(col("prediction") == 0.0).agg(avg("probability").alias("avg_low_risk_probability"), count("*").alias("low_risk_count"))
model_performance_metrics = {"auc_roc": auc_score, "auc_pr": precision_recall_auc, "feature_importance": feature_importance_dict, "prediction_distribution": {item.prediction: item.count for item in prediction_stats}, "confusion_matrix": dict(confusion_matrix), "high_risk_analysis": high_risk_predictions.collect()[0], "low_risk_analysis": low_risk_predictions.collect()[0]}
return rf_model, model_performance_metrics
def predict_individual_risk(model, genetics, hormonal_changes, stress_level, age, poor_hair_care, smoking):
genetics_val = 1.0 if genetics == "Yes" else 0.0
hormonal_val = 1.0 if hormonal_changes == "Yes" else 0.0
stress_val = 2.0 if stress_level == "High" else (1.0 if stress_level == "Medium" else 0.0)
age_val = float(age) / 100.0
hair_care_val = 1.0 if poor_hair_care == "Yes" else 0.0
smoking_val = 1.0 if smoking == "Yes" else 0.0
feature_vector = [genetics_val, hormonal_val, stress_val, age_val, hair_care_val, smoking_val]
vector_assembler = VectorAssembler(inputCols=["genetics_encoded", "hormonal_encoded", "stress_encoded", "age_normalized", "hair_care_encoded", "smoking_encoded"], outputCol="features")
input_df = spark.createDataFrame([(genetics_val, hormonal_val, stress_val, age_val, hair_care_val, smoking_val)], ["genetics_encoded", "hormonal_encoded", "stress_encoded", "age_normalized", "hair_care_encoded", "smoking_encoded"])
input_vectorized = vector_assembler.transform(input_df)
prediction_result = model.transform(input_vectorized)
risk_probability = prediction_result.select("probability").collect()[0]["probability"][1]
risk_prediction = prediction_result.select("prediction").collect()[0]["prediction"]
risk_level = "高风险" if risk_probability > 0.7 else ("中等风险" if risk_probability > 0.4 else "低风险")
individual_risk_result = {"risk_probability": float(risk_probability), "risk_prediction": int(risk_prediction), "risk_level": risk_level, "input_features": {"genetics": genetics, "hormonal_changes": hormonal_changes, "stress_level": stress_level, "age": age, "poor_hair_care": poor_hair_care, "smoking": smoking}}
return individual_risk_result
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓