注意:该项目只展示部分功能,如需了解,文末咨询即可。
1.开发环境
发语言:python
采用技术:Spark、Hadoop、Django、Vue、Echarts等技术框架
数据库:MySQL
开发环境:PyCharm
2 系统设计
随着无人驾驶技术的快速发展和网约车市场的持续扩张,公众对无人驾驶网约车的关注度不断提升,在抖音等社交媒体平台上产生了大量相关讨论和评论。这些海量的用户生成内容蕴含着丰富的社会舆情信息,反映了公众对无人驾驶技术的态度、担忧和期待。然而,传统的舆情分析方法难以有效处理和挖掘这些非结构化的大数据,缺乏系统性的分析框架和可视化呈现手段,使得企业、政府和研究机构难以准确把握公众情感变化和舆论趋势,影响了决策的科学性和及时性。
本系统基于Python、Spark、Hadoop等大数据技术栈,构建了面向无人驾驶网约车抖音舆情的多维度分析体系。系统以抖音平台的视频评论数据为研究对象,运用自然语言处理、机器学习和数据挖掘技术,从情感分析、用户画像、内容话题和传播互动四个维度深入挖掘舆情特征和演变规律。在数据处理层面,系统利用Hadoop分布式存储管理海量评论数据,采用Spark进行分布式计算和实时分析,通过MySQL数据库存储结构化分析结果。在分析算法层面,系统集成了情感分析算法、文本聚类算法、用户画像构建算法和传播力度量模型,能够自动识别评论情感倾向、提取热点话题、分析用户特征和评估传播影响力。在可视化展示层面,系统采用Vue框架构建响应式前端界面,利用Echarts图表库提供丰富的数据可视化效果,支持实时动态更新和交互式操作,为用户提供直观便捷的分析体验。
基于大数据和python的无人驾驶网约车舆情分析可视化大屏系统主要包含四大核心功能模块:舆情情感分析模块,负责对评论进行情感极性识别、时间演变趋势分析和情感词云生成;用户画像与地域分析模块,实现用户特征挖掘、地域分布统计和区域情感差异分析;话题与内容分析模块,提供热点话题识别、关键问题提取和内容互动关系分析;传播与互动分析模块,分析评论互动热度、传播效果和用户参与规律。各模块采用模块化设计,既能独立运行又能协同工作,通过Vue前端和Echarts图表库实现数据的可视化展示。
3 系统展示
3.1 大屏页面
3.2 分析页面
3.3 基础页面
4 更多推荐
计算机专业毕业设计新风向,2026年大数据 + AI前沿60个毕设选题全解析,涵盖Hadoop、Spark、机器学习、AI等类型
基于机器学习的脱发风险因素分析与预测系统
基于Hadoop+Spark的世界500强企业数据分析与可视化系统
基于Python+大数据的超市销售行为分析与预测系统
【避坑必看】26届计算机毕业设计选题雷区大全,这些毕设题目千万别选!选题雷区深度解析
5 部分功能代码
def propagation_analysis_process(comment_df):
time_interaction = comment_df.withColumn("hour", hour(col("comment_time"))).groupBy("hour").agg(
sum("like_count").alias("hourly_likes"),
sum("reply_count").alias("hourly_replies"),
count("*").alias("hourly_comments"),
avg("like_count").alias("avg_hourly_likes")
).orderBy("hour")
high_interaction_threshold = comment_df.select(
expr("percentile_approx(like_count, 0.9)").alias("like_90th"),
expr("percentile_approx(reply_count, 0.9)").alias("reply_90th")
).collect()[0]
high_interaction_comments = comment_df.filter(
(col("like_count") >= high_interaction_threshold.like_90th) |
(col("reply_count") >= high_interaction_threshold.reply_90th)
).select("comment_content", "like_count", "reply_count", "user_source", "comment_time")
source_analysis = comment_df.groupBy("user_source").agg(
count("*").alias("user_count"),
avg("like_count").alias("avg_likes"),
avg("reply_count").alias("avg_replies"),
sum("like_count").alias("total_likes")
).withColumn("source_influence", col("total_likes") * col("user_count"))
def calculate_propagation_score(like_count, reply_count, comment_time):
if not like_count or not reply_count:
return 0.0
time_factor = 1.0
current_time = datetime.now()
if comment_time:
days_diff = (current_time - comment_time).days
time_factor = max(0.1, 1.0 - days_diff * 0.01)
interaction_score = like_count * 0.7 + reply_count * 0.3
propagation_score = interaction_score * time_factor
return float(propagation_score)
propagation_udf = udf(calculate_propagation_score, FloatType())
propagation_df = comment_df.withColumn("propagation_score",
propagation_udf(col("like_count"), col("reply_count"), col("comment_time"))
)
video_form_effect = comment_df.groupBy("video_form", "video_tone").agg(
avg("like_count").alias("avg_likes"),
avg("reply_count").alias("avg_replies"),
count("*").alias("video_count")
).withColumn("form_effectiveness", col("avg_likes") * 0.6 + col("avg_replies") * 0.4)
sentiment_interaction = comment_df.join(
comment_df.withColumn("sentiment",
when(col("comment_content").rlike("好|棒|赞|支持|期待"), "positive")
.when(col("comment_content").rlike("差|烂|反对|担心|害怕"), "negative")
.otherwise("neutral")
), "comment_id"
).groupBy("sentiment").agg(
avg("like_count").alias("avg_sentiment_likes"),
avg("reply_count").alias("avg_sentiment_replies")
)
top_propagation = propagation_df.orderBy(desc("propagation_score")).select(
"comment_content", "propagation_score", "like_count", "reply_count", "author"
).take(50)
return {
"time_interaction_pattern": time_interaction.collect(),
"high_interaction_analysis": high_interaction_comments.collect(),
"source_channel_effect": source_analysis.collect(),
"video_form_effectiveness": video_form_effect.collect(),
"sentiment_interaction_relation": sentiment_interaction.collect(),
"top_propagation_content": top_propagation
}
源码项目、定制开发、文档报告、PPT、代码答疑
希望和大家多多交流 ↓↓↓↓↓