3D Clothed Human Reconstruction in the Wild论文笔记

3D Clothed Human Reconstruction in the Wild

论文地址:https://arxiv.org/pdf/2207.10053.pdf

作者:Moon, Gyeongsik, Nam, Hyeongjin, Shiratori, Takaak

发表:CVPR 2022

链接:https://github.com/hygenie1228/ClothWild_RELEASE


单视图人体重建

一. 概括

最近的大多数三维人体重建方法都需要三维扫描来进行训练;因此,它们是在合成数据集上训练的,这些数据集由3D扫描和从扫描中渲染的图像组成。尽管利用这些合成数据集已经取得了重大进展,但它们都无法在野外图像上产生可靠的结果。
在这里插入图片描述

为什么? 野外图像是在我们的日常环境中拍摄的,比如杂乱的办公室和音乐厅,有各种各样的人体姿势、外观和严重的人体遮挡。而且人体的动作更加复杂。

本文提出:一个3D穿戴的人体重建框架,利用弱监督策略从野外数据集学习3D穿戴的人体。这里的弱监督指的是监督目标不是完整的三维数据,而是仅在单摄像头视角下定义的二维数据(即二维布料分割)

参考SMPL的相关定义,SMPLicit生成布料,DensePose告知每个人体像素对应于 SMPL 的 3D 人体表面,Pose2Pose做为3D人体重建方法

二. 方法(ClothWild)

ClothNet + BodyNet
在这里插入图片描述

1. ClothNet

给定一个输入图像 I I I,ClothNet预测

布料存在分数 c = ( c 1 , . . . , c N c ) c = (c_{1},...,c_{N_{c}}) c=(c1,...,cNc)

i i i个布料存在得分 c i c_{i} ci表示人类穿着第 i i i种衣服的概率。

在去除原始 ResNet 最后部分的全连接层后,使用 ResNet-50从输入图像中提取图像特征向量 f ∈ R 2048 f ∈ R^{2048} fR2048。图像特征向量 f f f 被传递到全连接层,然后是 sigmoid 激活函数,来预测布料存在分数 c c c

一组布料潜码 { z i } i = 1 N c \left\{\mathbf{z}_{i}\right\}_{i=1}^{N_{c}} { zi}i=1Nc N c = 5 N_{c}=5 Nc=5表示考虑的衣服数量,包括上衣、外套、裤子、裙子和鞋子)

i i i个布料潜码 z i ∈ R d i \mathbf{z}_{i} \in \mathbb{R}^{d_{i}} ziRdi表示第 i i i个3D布料的低维码,嵌入在3D布料模型的潜空间SMPLicit中,按照 SMPLicit 为鞋子设置 d i = 4 d_{i}=4 di=4,为其他衣服设置 d i = 18 d_{i} = 18 di=18。(一种布料生成模型 SMPLicit,它将 3D 衣服嵌入为代表布料风格和布料剪裁的潜在代码。 SMPLicit 涵盖各种各样的衣服,这些衣服的几何特性各不相同,例如袖长和宽松度。在我们的框架中,我们采用 SMPLicit 作为布料生成模型。)

使用 N c N_{c} Nc全连接层从 f f f预测一组布料潜码 { z i } i = 1 N c \left\{\mathbf{z}_{i}\right\}_{i=1}^{N_{c}} { zi}i=1Nc,其中第 i i i个全连接层预测第 i i i个布料的潜码 z i z_{i} zi

性别 g g g

性别 g ∈ R 2 \mathbf{g} \in \mathbb{R}^{2} gR2是一个one-hot编码向量。

另一个全连接层,通过softmax激活函数,根据 f f f预测性别。

预测的一组布料潜码 { z i } i = 1 N c \left\{\mathbf{z}_{i}\right\}_{i=1}^{N_{c}} { zi}i=1N

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值