Hadamard 分数阶微分/积分定义

本文深入探讨了Hadamard分数阶微分和积分的概念,介绍了它们的定义及公式。利用Gamma函数,展示了如何计算Hadamard分数阶微分和积分,并阐述了它们在数学分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadamard 分数阶微分:
Dαy(t)=1Γ(n−α)(tddt)n∫1t(ln⁡ts)n−α+1y(s)dssD^\alpha y(t)=\frac{1}{\Gamma(n-\alpha)}\left(t\frac{\rm{d}}{{\rm d}t}\right)^n\int_1^t\left(\ln\frac{t}{s}\right)^{n-\alpha+1}y(s)\frac{{\rm d}s}{s}Dαy(t)=Γ(nα)1(tdtd)n1t(lnst)nα+1y(s)sds

其中, α∈[n−1,n),n∈Z+\alpha\in[n-1,n),n\in\Z^+α[n1,n),nZ+


Hadamard 分数阶积分:
Iαy(t)=1Γ(α)∫1t(ln⁡ts)α−1y(s)dssI^\alpha y(t)=\frac{1}{\Gamma(\alpha)}\int_1^t\left(\ln\frac{t}{s}\right)^{\alpha-1}y(s)\frac{{\rm d}s}{s}Iαy(t)=Γ(α)11t(lnst)α1y(s)sds


其中 Γ(⋅)\Gamma(·)Γ() 是 Gamma 函数

Γ(x)=∫0+∞tx−1e−t dt(x>0)\Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} \mathrm{~d} t(x>0)Γ(x)=0+tx1et dt(x>0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值