Hadamard 分数阶微分:
Dαy(t)=1Γ(n−α)(tddt)n∫1t(lnts)n−α+1y(s)dssD^\alpha y(t)=\frac{1}{\Gamma(n-\alpha)}\left(t\frac{\rm{d}}{{\rm d}t}\right)^n\int_1^t\left(\ln\frac{t}{s}\right)^{n-\alpha+1}y(s)\frac{{\rm d}s}{s}Dαy(t)=Γ(n−α)1(tdtd)n∫1t(lnst)n−α+1y(s)sds
其中, α∈[n−1,n),n∈Z+\alpha\in[n-1,n),n\in\Z^+α∈[n−1,n),n∈Z+
Hadamard 分数阶积分:
Iαy(t)=1Γ(α)∫1t(lnts)α−1y(s)dssI^\alpha y(t)=\frac{1}{\Gamma(\alpha)}\int_1^t\left(\ln\frac{t}{s}\right)^{\alpha-1}y(s)\frac{{\rm d}s}{s}Iαy(t)=Γ(α)1∫1t(lnst)α−1y(s)sds
其中 Γ(⋅)\Gamma(·)Γ(⋅) 是 Gamma 函数
Γ(x)=∫0+∞tx−1e−t dt(x>0)\Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} \mathrm{~d} t(x>0)Γ(x)=∫0+∞tx−1e−t dt(x>0)