力扣(LeetCode)152. 乘积最大子数组(C++)

本文介绍了一种使用动态规划解决寻找数组中具有最大乘积的连续子数组的方法。通过维护最大值和最小值的状态,算法能有效地处理包含负数的情况。提供了两种实现方式:朴素DP和优化后的滚动数组实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序列dp

pp
f[i]f[i]f[i] 表示以 iii 结尾的连续子数组的最大乘积,d[i]d[i]d[i] 表示以 iii 结尾的连续子数组的最小乘积 。

如果只有正数,我们只需要考虑最大乘积 f[i]f[i]f[i] ;有负数,需要考虑与负数相乘的数,越小越好。所以 d[i]d[i]d[i] 维护最小乘积。

从思维考虑,上面的思想已经足以写出代码。理论证明需要正数负数分情况讨论,最后根据公式归一化——步骤繁琐,思维简单,感兴趣的同学可以尝试证明。

状态转移方程 :

f[i]=max{nums[i]nums[i]×f[i−1]nums[i]×d[i−1]f[i] = max\begin{cases} nums[i] \\ nums[i]\times f[i-1] \\ nums[i]\times d[i-1] \end{cases}f[i]=maxnums[i]nums[i]×f[i1]nums[i]×d[i1]

d[i]=min{nums[i]nums[i]×f[i−1]nums[i]×d[i−1]d[i] = min\begin{cases} nums[i] \\ nums[i]\times f[i-1] \\ nums[i]\times d[i-1] \end{cases}d[i]=minnums[i]nums[i]×f[i1]nums[i]×d[i1]

朴素dp
class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int n = nums.size();
        vector<int> f(n,0),d(n,0);
        f[0] = nums[0],d[0] = nums[0];
        for(int i = 1;i<n;i++){
            f[i] = max(max(nums[i],nums[i]*f[i-1]),nums[i]*d[i-1]);
            d[i] = min(min(nums[i],nums[i]*d[i-1]),nums[i]*f[i-1]);
        }
        int ans = INT_MIN;
        for(auto &t:f) ans = max(ans,t);
        return ans;
    }
};
  1. 时间复杂度 : O(n)O(n)O(n)nnn 是数字数量,状态转移的时间复杂度 O(n)O(n)O(n)
  2. 空间复杂度 : O(n)O(n)O(n) , 所有状态的空间复杂度 O(n)O(n)O(n)
滚动数组

注意到,新状态 f[i]f[i]f[i] 只与上一个状态 f[i−1]f[i-1]f[i1] 有关,可以用滚动数组优化为常数空间。

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int f = nums[0], d = nums[0],ans = nums[0];
        for(int i = 1;i<nums.size();i++){
            int lf = f, ld = d;
            f = max(max(nums[i],nums[i]*lf),nums[i]*ld);
            d = min(min(nums[i],nums[i]*ld),nums[i]*lf);
            ans = max(ans,f);
        }
        return ans;
    }
};
  1. 时间复杂度 : O(n)O(n)O(n)nnn 是数字数量,状态转移的时间复杂度 O(n)O(n)O(n)
  2. 空间复杂度 : O(1)O(1)O(1) , 只使用常数级空间 。
AC

AC

致语
  • 理解思路很重要
  • 读者有问题请留言,清墨看到就会回复的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清墨韵染

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值